
Integrating Planning and Control

for Constrained Dynamical Systems

David C. Conner

CMU-RI-TR-08-01

Submitted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy in Robotics

Robotics Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania

December, 2007

Thesis Committee:
Howie Choset, Chair
Alfred A. Rizzi, Chair

Jeff Schneider
Vijay Kumar, University of Pennsylvania

Copyright c© 2007 by David C. Conner. All rights Reserved.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
DEC 2007 2. REPORT TYPE

3. DATES COVERED
 00-00-2007 to 00-00-2007

4. TITLE AND SUBTITLE
Integrating Planning and Control for Constrained Dynamical Systems

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Carnegie Mellon University,Robotics Institute,Pittsburgh,PA,15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
This thesis develops an approach to addressing the coupled navigation and control problem for wheeled
mobile robots. Instead of using a top-down decoupled approach that does not respect lowlevel constraints,
or a bottom-up approach that cannot guarantee satisfaction of high-level goals, our approach is
middle-out. We develop local feedback control policies that respect the low-level constraints. The approach
then uses a collection of these policies with existing formal discrete planning methods to either produce a
hybrid feedback control policy that guarantees high-level goals are satisfied, or in the worst case, verifies
that the high-level specification is not realizable. Our approach enables existing formal symbolic planning
methods to be applied to highly constrained systems. We extend the sequential composition of local
feedback control policies to wheeled mobile robots in a way that enables the automated synthesis of hybrid
control policies. The thesis defines four basic "composability" requirements that guide our design of local
policies. We develop two families of generic feedback policies that induce low-level behaviors in a way that
enables their formal composition. The thesis also develops a novel approach for guaranteeing that a given
control policy is collision free. By design, the policies respect multiple interacting constraints including
large non-circular body shapes, nonholonomic constraints, and input bounds. Given a collection of the
local policies and a task specification, our approach uses existing symbolic planning methods to
automatically synthesize a switching strategy among the policies. Executing the switching strategy induces
continuous motion that satisfies the high-level behavioral specification. This thesis demonstrates the
approach on real mobile robots. While wheeled mobile robot navigation is the chosen domain in this thesis,
our future work will develop composable policies that extend these formal methods to other constrained
dynamical systems.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

238

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

ii c© 2007David C. Conner

Abstract

This thesis develops an approach to addressing the coupled navigation and control problem for
wheeled mobile robots. Instead of using a top-down decoupled approach that does not respect low-
level constraints, or a bottom-up approach that cannot guarantee satisfaction of high-level goals,
our approach is middle-out. We develop local feedback control policies that respect the low-level
constraints. The approach then uses a collection of these policies with existing formal discrete
planning methods to either produce a hybrid feedback control policy that guarantees high-level goals
are satisfied, or in the worst case, verifies that the high-level specification is not realizable. Our
approach enables existing formal symbolic planning methods to be applied to highly constrained
systems.

We extend the sequential composition of local feedback control policies to wheeled mobile
robots in a way that enables the automated synthesis of hybrid control policies. The thesis defines
four basic “composability” requirements that guide our design of local policies. We develop two
families of generic feedback policies that induce low-level behaviors in a way that enables their
formal composition. The thesis also develops a novel approach for guaranteeing that a given control
policy is collision free. By design, the policies respect multiple interacting constraints including
large non-circular body shapes, nonholonomic constraints, and input bounds. Given a collection
of the local policies and a task specification, our approach uses existing symbolic planning meth-
ods to automatically synthesize a switching strategy among the policies. Executing the switching
strategy induces continuous motion that satisfies the high-level behavioral specification. This thesis
demonstrates the approach on real mobile robots.

While wheeled mobile robot navigation is the chosen domain in this thesis, our future work
will develop composable policies that extend these formal methods to other constrained dynamical
systems.

c© 2007 David C. Conner i

Acknowledgments

I am indebted to my advisers, Howie Choset and Alfred Rizzi, for their support, patience, and
guidance throughout the thesis process. I am grateful for their time in smoothing the rough edges,
and challenging me to think more deeply about the fundamental questions underlying the basic
problems. I would also like to thank my committee members, Jeff Schneider and Vijay Kumar, for
their useful comments and discussions along the way.

My long term office mates, Sarjoun Skaff and Jonathan Hurst, have helped keep me sane during
my stay at Carnegie Mellon. I thank you for the laughs, debates, and general good humor during
my stay. You have been true friends, and I shall always value our time together.

Several of the simulations and experiments discussed in this thesis are the result of an ongoing
collaboration with Hadas Kress-Gazit and George Pappas at UPenn. Thank you for your help and
assistance with the automata synthesis. Your help, as well as your friendship, is valued.

Along with Sarjoun, I would like to thank Steve Tully, Hyungpil Moon, and Gorkem Erinc for
their invaluable assistance with the robot experiments. I’d also like to thank Bart Nabbe for helpful
conversations about the vision-based localization. Thanks to Maxim Likhachev and David Ferguson
for sharing their D*-lite code and discussing aspects of discrete planning.

I would like to thank my friends and colleagues at the Robotics Institute, especially those in
the Bio-robotics Lab, Microdynamic Systems Lab, and Manipulation Lab, including Aaron, Amir,
Bertram, Clark, Devin, Elie, Prasad, Ravi, Sidd, and Uluc. Thanks for encouragement, and many
enlightening discussions. Thanks to Ross and Matt for giving me useful comments on some thesis
chapters. Thanks also to Bernardine, Chris, James, and Joel for helpful conversations.

Aaron Greenfield and David Steck, along with Sarjoun and Jonathan, helped me stay somewhat
healthy and burn off some frustration in the weight room. My wife thanks you for that.

My thanks to Suzanne, Peggy, Jean, and Stephanie for their assistance and support over the
years. Thanks for keeping the ship upright, and the faculty in line.

Thanks to the many professors and staff at CMU who were generous of their time, and freely
willing to discuss ideas with no apparent payoff for them. I especially thank Chris Atkeson, Ed
Clarke, John Dolan, Geoff Gordon, David Handron, Ralph Hollis, George Kantor, Matt Mason, and
Reid Simmons. I appreciate the collaborative spirit fostered at CMU in general, and the Robotics
Institute in particular.

Finally, but most of all, a big thank you to my Family. To my parents, I thank you for the
sacrifices that you made, and for your love and support. To my children, Matthew and Ian, you are
a constant source of inspiration and joy in my life. Never be afraid to follow your dreams; I love
you so very much. To Cody, thanks for being my furry “best friend” for 13 1/2 years1. To my wife
Karen, I could not have done this without your support, and probably would not have undertaken
this task without your encouragement. Thank you for your love, sacrifices, and constant support. I
love you. I think of you every time I type my password.

I am thankful for all that I have been given. X

This work was sponsored in part by the U.S. Army Research Office, under MURI DAAD19-02-
01-0383. The views and conclusions contained in this document are those of the author and should
not be interpreted as representing the official policies, either expressed or implied, of the Army
Research Office or the U.S. Government.

1This statement requested by Ian.

c© 2007 David C. Conner iii

v

Contents

List of Figures . ix

1 Introduction 1
1.1 Motivation . 1
1.2 Approach . 3
1.3 Thesis Contributions . 6
1.4 Thesis Overview . 8

2 Related Work 9
2.1 Conventional Approaches . 9
2.2 Policy Composition Approaches . 12

2.2.1 Basic Sequential Composition . 12
2.2.2 Applications of Sequential Composition 15

2.3 Discrete Planning Methods . 17

3 Overview of Technical Approach 19
3.1 Basic Definitions . 19
3.2 Flow-through Policies . 20
3.3 Composability Requirements for Local Policies 21

3.3.1 Collision Free . 21
3.3.2 Convergent in Finite Time . 22
3.3.3 Conditionally Invariant . 23
3.3.4 Efficient Inclusion Tests . 24

3.4 Extended Prepares Definition . 25
3.5 Policy Space Planning . 26

3.5.1 Sequence-based Planning . 28
3.5.2 Order-based Planning . 29
3.5.3 Automata-based Planning . 33

3.6 Summary . 35
3.7 Glossary . 35

4 Application of Policy Composition to Fully Actuated Systems 37
4.1 Local Control Policy Design for Fully Actuated Systems 37

4.1.1 Vector Field Design . 38
4.1.2 Control Law Design . 41

4.2 Policy Space Planning and Control . 48
4.2.1 Basic Scenarios . 48
4.2.2 Reactive Automaton Based Planning . 50
4.2.3 Global Policy Design: The “Dynamical P” Problem 51

4.2.4 Automated Policy Instantiation and Deployment 53

5 Application to Single-bodied Wheeled Mobile Robots 57
5.1 System Constraints and Modeling Framework . 57

5.1.1 Pose Space Constraints . 57
5.1.2 Nonholonomic Constraints . 58
5.1.3 Input Bounds . 60

5.2 Basic Design Approach . 60
5.3 Generic Policy Designs . 63

5.3.1 ‘PF’ Policy Design . 65
5.3.2 ‘SQ’ Policy Design . 66

5.4 Policy Validation . 67
5.5 Policy Instantiation . 69
5.6 Prepares Graph Generation . 71
5.7 Relative Completeness Quantification . 74
5.8 Conclusion . 78

6 Demonstrations of Coupled Planning and Control 79
6.1 Order-based Planning . 79

6.1.1 ‘Deminer’ Robot Experiments . 81
6.1.2 ‘LAGR’ Robot Experiments . 87

6.2 Model Checking-Based Sequence Planning . 95
6.3 Automata-based Planning . 97

6.3.1 ‘LAGR’ Robot Experiments . 97
6.3.2 Ackermann Steered Car-like Parking Simulations 104
6.3.3 Multi-vehicle Scenarios . 110

6.4 Summary . 115

7 Conclusion and Future Work 117
7.1 Contributions . 117
7.2 Future Work . 120

7.2.1 Extension of the Basic Approach . 120
7.2.2 Extension of Policy Design Techniques 121
7.2.3 Extension to More Complex Systems . 122
7.2.4 Extension of Planning Tools . 123

A Modeling Framework 125
A.1 Work space, Configuration space, and State Space 125
A.2 System Constraints . 126
A.3 Fiber Bundles and Connections . 128
A.4 Examples . 132

A.4.1 Vertical Rolling Disk (Unicycle) . 132
A.4.2 Differential-drive System . 134
A.4.3 Ackermann Steered Car-like System . 137
A.4.4 Diff-drive towing a trailer . 140

vi c© 2007 David C. Conner

B Details of Control Policies For Fully Actuated Systems 143
B.1 Vector Field Design Details . 143

B.1.1 Mapping of Convex Polytopes ton-ball 143
B.1.2 Harmonic Functions on a Unit Disk . 149

B.2 Component Policy Design Details . 150
B.2.1 Unconstrained Dynamics Control Policy 150

B.3 Details of Hybrid Control Policies for Constrained Idealized Dynamical Systems . 154
B.3.1 Save Control Policy . 155
B.3.2 Align Control Policy . 160
B.3.3 Track Control Policy . 161

C Test for Collision Free Cells 165
C.1 Alternate Approaches . 165
C.2 Calculation of Expanded Cell . 167
C.3 Collision Testing Using Expanded Cells . 174

C.3.1 Mesh Definition . 174
C.3.2 Collision Testing . 174
C.3.3 Patch Stitching and Mesh Refinement . 176

C.4 Testing Process . 178

D ‘PF’ Style Control Policies 181
D.1 Policy Structure . 181
D.2 General Control Approach . 182
D.3 Cell Definitions . 185

D.3.1 Line-segment Based Cell . 185
D.3.2 Circular Arc Based Cell . 189

D.4 Policy Designs . 191
D.4.1 Unicycle System / Vertical Rolling Disk / Differential-drive system 192
D.4.2 Ackermann Steered Car-like system . 193

D.5 Policy Validation . 194
D.5.1 Collision Free . 194
D.5.2 Finite-time Convergence . 195
D.5.3 Conditional Invariance . 195
D.5.4 Simple Inclusion Tests . 196

D.6 Conclusion . 197

E ‘SQ’ Style Control Policies 199
E.1 Cell Definition . 199
E.2 Policy Validation . 201

E.2.1 Collision Free . 202
E.2.2 Conditional Invariance Test . 202
E.2.3 Simple Inclusion Tests . 203

E.3 Policy Design . 204
E.4 Conclusion . 205

c© 2007 David C. Conner vii

F Robots Used in Demonstrations 207
F.1 ‘Deminer’ Differential-drive Robot . 207
F.2 ‘LAGR’ Differential-drive Robot . 210
F.3 Ackermann Steered Car-like Robot . 214

References 216

viii c© 2007 David C. Conner

ix

List of Figures

1.1 Navigation problem . 2
1.2 Decoupled planning and control . 3
1.3 Policy domain . 3
1.4 Funnel as an idealized policy . 4
1.5 Desired global control policy . 5
1.6 Composite global control policy . 6
1.7 Policy composition . 7

2.1 Total order switching strategy among deployed policies. 13
2.2 Cyclic graph to acyclic tree . 14

3.1 Vector field flow . 20
3.2 Composition of multiple policies . 21
3.3 Collision test . 22
3.4 Conditional positive invariance . 23
3.5 Domain inclusion test . 24
3.6 Extended prepares definition . 25
3.7 Example collection of policies and prepares graph 27
3.8 Sequence-based planning . 28
3.9 Order-based planning . 31
3.10 Order-based planning execution . 32
3.11 Automata-based planning . 34

4.1 Vector field for a flow-through policy . 38
4.2 Mapping from polygonal cell to disk . 39
4.3 Convergent potential function for polygonal cell 41
4.4 Simulation of a dynamical system . 43

4.5 Vector field derivative spectral norm (
⌈⌉

DqX̂
⌈⌉

) for a polygonal cell 44

4.6 Save policy covered by other policies. 47
4.7 Simulation of a constrained dynamical system . 48
4.8 Simulation of a kinematic system . 49
4.9 Nursery automaton simulation . 50
4.10 Configuration space cells for “dynamical P” simulation. 51
4.11 Policy-based decision making . 53
4.12 Heuristic for evaluating goal polygons . 54
4.13 Automated deployment simulation . 56

5.1 Robot pose . 58
5.2 Diff-drive robot . 59

5.3 Cell in body pose space . 61
5.4 Constrained input set for kinematic systems . 62
5.5 Definition of planar goal set . 64
5.6 Path following style policy . 65
5.7 Super quadric cell definition . 66
5.8 Super quadric level sets . 67
5.9 Policy domain in free space tests . 68
5.10 Constraint surface forL (ζ, γ) from (5.4). 69
5.11 Cache vs. Suite of policies . 71
5.12 Prepares tests for policy deployment . 73
5.13 Third prepares test . 73
5.14 Sampled poses for coverage fraction calculation 75
5.15 Policy reference grid spacings . 75
5.16 Coverage fraction estimates converge . 76
5.17 Estimated coverage fraction as function of policy grid spacing 77

6.1 ‘Deminer’ laboratory robot . 81
6.2 Deminer input sets . 81
6.3 Detail of seven cells in environment. 82
6.4 Projection of 288 cells into the workspace. 83
6.5 Complete suite of 288 cells in three-dimensional pose space. 83
6.6 Experimental results #1-4 for ‘Deminer’ robot . 84
6.7 Experimental results #5-6 for ‘Deminer’ robot . 85
6.8 Experimental results #6-7 for ‘Deminer’ robot . 86
6.9 ‘LAGR’ robot navigating a corridor. 87
6.10 ‘LAGR’ meta-policies. 88
6.11 Example meta-policy for ‘LAGR’ experiments 89
6.12 ‘LAGR’ left turn meta-policy . 89
6.13 ‘LAGR’ robot executing K-turn . 90
6.14 ‘LAGR’ robot order-based experiments composite. 91
6.15 ‘LAGR’ robot experiment details. 92
6.16 ‘LAGR’ robot goal close-up . 93
6.17 ‘LAGR’ robot experiments with re-planning. 93
6.18 Simulation of open loop sequence of policies . 96
6.19 ‘LAGR’ timid night watchman. 98
6.20 ‘LAGR’ timid night watch automaton node switching. 99
6.21 ‘LAGR’ timid night watch policy switching. 100
6.22 ‘LAGR’ timid night watch re-planning. 100
6.23 ‘LAGR’ timid night watch experiments. 102
6.24 ‘LAGR’ node switching during experiment . 103
6.25 ‘LAGR’ policy switching during experiment . 103
6.26 Local parking behavior induced by meta-policy 104
6.27 Environment for parking simulations . 105
6.28 Parking policy details . 106
6.29 Policies deployed at intersection . 106
6.30 Two executions of parking simulation . 108
6.31 Four executions of parking simulation . 109
6.32 Simple multi-vehicle traffic simulation . 111

x c© 2007 David C. Conner

6.33 Snapshot of complex multi-vehicle traffic simulation 112
6.34 Later snapshot of multi-vehicle simulation . 113
6.35 Close up of multi-vehicle behaviors . 114

A.1 Representation of planar workspace . 125
A.2 Base-fiber decomposition of configuration space 129
A.3 Vertical rolling disk . 133
A.4 Diff-drive robot . 135
A.5 Car-like system with Ackermann steering . 137
A.6 Differential-drive robot with trailer . 141

B.1 Face intersection point for linear retraction . 147
B.2 Mapping of polygon to disk with boundary conditions 149
B.3 Collision projection used by Save control policy 156
B.4 Collision with the intersection of two faces using the Save policy 157
B.5 Velocity vector relationships for the Track control policy 162

C.1 Expanded obstacles in workspace . 166
C.2 Expanded obstacles in pose space . 167
C.3 Schematic example of collision test . 168
C.4 Cell toR (Ξi) mapping . 169
C.5 Expanded cell . 170
C.6 Planar slices used to determine the expanded cell 170
C.7 Approximate collision test failures. 175
C.8 Stitching surface patches together. 176
C.9 Blend normal vectors . 177
C.10 Expanded cell for polygonal robots . 178

D.1 Reference path with defined coordinates. 182
D.2 PF control surface . 183
D.3 PF control surface . 183
D.4 PF smoothed control surface . 184
D.5 PF blending function . 185
D.6 PF cell limiting surfaces . 186
D.7 PF cell limiting surfaces . 187
D.8 PF cell . 188
D.9 PF arc cell . 189
D.10 PF arc-based cell . 190
D.11 Control input set for unicycle/diff-drive systems 192
D.12 PF cell boundary definitions . 195

E.1 Schematic representations of the generic SQ cell 200
E.2 Example SQ cells . 201
E.3 Constraint surface forL (ζ, γ) from (E.4). 203
E.4 Corresponding boundary points for cell inclusion tests 203
E.5 Level set definition for control . 205

F.1 ‘Deminer’ laboratory robot . 207
F.2 ‘Deminer’ laboratory robot bounding ellipse . 208

c© 2007 David C. Conner xi

F.3 Deminer input sets . 208
F.4 ‘LAGR’ robot with stereo cameras . 210
F.5 ‘LAGR’ body plan . 211
F.6 ‘LAGR’ velocity response - command and actual 212
F.7 ‘LAGR’ input sets . 213
F.8 Ackermann-steered ‘mini-van’ body . 214
F.9 Ackermann steering limits . 215
F.10 Ackermann steering rate limits . 215

xii c© 2007 David C. Conner

1

Chapter 1

Introduction

One of the most basic problems in robotics is moving around an environment towards a designated
goal while avoiding obstacles. Determining how to avoid obstacles and reach the designated goal is
a navigation problem; moving is acontrols problem. In other words, for a real system to avoid ob-
stacles and reach its goal, it must determine the control inputs that induce the required motion. Thus,
at its most basic, this is acouplednavigation and control problem. Designing a single, globally-
convergent, feedback control policy that addresses this coupled problem is generally intractable due
to the complexity of non-linear system modeling and satisfying multiple interacting constraints.

Conventionally, this coupled navigation and control problem is addressed by using a decoupled
approach. First the goal is defined, then tractable planning techniques specify a safe path through the
environment, and a control law that causes the system to follow the desired path is designed. This
decoupled approach can be problematic as constraints on the inputs and vehicle dynamics may make
following a given path unrealizable; that is, there are no inputs that realize the desired velocity. This
can render the goals unreachable without replanning. This thesis advances a robot control paradigm
that integrates planning and control by considering the constraints up front. The low-level system
behavior is guaranteed by local feedback control policies, and the high-level behavior is guaran-
teed by formally composing these simple behaviors. This method, termedsequential composition,
is shown to be robust to disturbances and perturbations [21]. This thesis serves to extend basic
sequential composition to nonholonomic systems and incorporate additional planning techniques.

1.1 Motivation

This thesis focuses on the domain of wheeled mobile robots navigating among obstacles in a planar
workspace, as shown in Figure 1.1. We use this navigation problem to demonstrate the policy
composition approach. Although navigation and control appears to be extensively addressed in
the literature [22, 70, 75, 118], further inspection reveals that this problem demonstrates a variety
of nonholonomic velocity constraints, input bounds, and configuration limits due to body shape
and obstacles, that are often ignored or simplified. While each of these constraints is challenging
in and of themselves, the combination and interaction of the constraints makes this a particularly
difficult challenge. Where previous research has simplified this problem by eliminating one or more
of these constraints, this thesis treats the constraints holistically. Thus, the wheeled mobile robot
navigation and control problem provides an excellent contrast between existing planning and control
approaches, and the paradigm advocated here.

Existing approaches to addressing the coupled navigation and control problem can be broadly
classified as either “bottom-up” or “top-down” approaches [14]. Thebottom-upapproach depends

G

O1

O2

O3

O4

O5

Figure1.1: Navigation problem: control a mobile robot so that it moves through its environment
and reaches its goal without colliding with any obstacles,Oi.

on emergent behaviors that are induced by applying low-level primitives based on reactions to sen-
sor inputs [19]. Thisbehavior-basedapproach is generally easy to implement, and has been used
to demonstrate moderately complex behaviors. The low-level behaviors respect the low-level con-
straints by construction. This bottom-up approach attempts to avoid high-level constraints such as
obstacles and satisfy high level goals by switching among the low-level behaviors. The approach
is fundamentally not verifiable, and is not capable of guaranteeing that complex behaviors are cor-
rectly performed. A contrasting approach used in mobile robots is the “top-down” approach. Here,
a reasoning system defines and schedules intermediate goals or tasks, a planning system defines
a path to goal, and a feedback control policy attempts to follow the path [22, 75]. Provided each
subtask is satisfactorily executed, the overall behavior is realizable. As stated earlier, this decoupled
approach can be problematic because the high-level reasoning typically ignores the low-level sys-
tem constraints in order for the planning problem to be tractable. This may result in goals that are
unreachable, or plans that are not robust to disturbances along the way; consider the illustrations in
Figure 1.2.

This thesis seeks to enable a “middle-out” [14] approach that combines the best of the “bottom-
up” and “top-down” approaches. The low-level behaviors are implemented using feedback control
policies that are designed to satisfy all of the system constraints over a limited domain. The key
difference with respect to conventional bottom-up approaches is that convergence guarantees are
required for these behaviors. Instead of identifying sub-tasks or sub-goals from the top down, this
middle-out approach uses the available local policies to define what sub-tasks are realizable. These

2 c© 2007 David C. Conner

(a) Curvature constraint violation (b) Significant disturbance

Figure1.2: Decoupled planning and control can lead to difficulties for constrained systems. a) The
implemented control law cannot follow the planned path due to a curvature constraint, shown by
darker line. b) Trying to reacquire a valid workspace path after a disturbance may lead to collision
because the control law is ignorant of obstacles. The question then arises, how much error can be
tolerated without requiring replanning?

sub-tasks are then composed to address the overall goal. This technique has been called “behavioral
programming” [14]. It then becomes more natural to plan symbolically over a discrete collection
of realizable behaviors than by specifying sub-goals in the continuous workspace. One goal of this
thesis is to extend the types of planning available, while preserving the systems ability to react to
changing environmental conditions.

1.2 Approach

The middle-out approach requires localfeedback control policiesthat map vehicle states to valid
control inputs. Thedomainof the policy is the region over which the mapping is valid. To be valid,
the feedback control policy must respect the interacting system constraints over its domain, and

D(Φ)

G (Φ)

Figure1.3: The policy has a domain,D(Φ), over which it is valid, and a designated goal setG (Φ).

c© 2007 David C. Conner 3

Φ

x

yV

D(Φ)

G (Φ)

Figure1.4: The funnel metaphor for a feedback policy can be viewed as an idealized version of
a Lyapunov function. The funnel “mouth”, represented by the largest ellipse at the maximum
Lyapunov value, specifies the policy domainD(Φ); the planar ellipses represent level sets of the
Lyapunov value. The system flow induced by the closed loop dynamics of the feedback policy
moves the system to ever lower Lyapunov values,V , toward the goal set,G (Φ), represented by the
projection of the funnel’s small end.

guarantee convergence to its goal set. Figure 1.3 shows a schematic representation of the domain
and goal set of a policy over a planar region. Throughout this thesis, we use the “funnel” metaphor
to represent the closed-loop action of a policy over its domain [21, 86]. With reference to Figure 1.4,
the height,V , of the simple funnel represents the value of an idealized Lyapunov function. Under
the influence of the policy, the closed-loop system dynamics act to decrease the height (Lyapunov
value) while bringing the system towards the goal set. Given certain properties of the feedback
control policy, the closed loop behavior flows from the policy domain to its associated goal set [21].

Ideally, the coupled navigation and control problem could be addressed with a single global
feedback control policy that respects the system constraints. In this case, the ideal global control
policy would have a Lyapunov function whose level sets resemble those of Figure 1.5. Instead of a
“thin” path defined through the workspace, the global policy has a “thick” domain that covers the
workspace. This approach is robust to disturbances, and mitigates the need for some re-planning.
For unconstrained systems navigating in open spaces, the global control policy design is simple.
Unfortunately, designing a single, provably correct, globally convergent control policy for realistic
constrained systems navigating in cluttered environments is thus far intractable.

To get around the difficulty of designing a global feedback control policy, this thesis advocates
addressing the coupled navigation and control problem by decomposing the global problem into a
series of intermediate tasks, or behaviors, where each intermediate task is solvable by a memoryless1

state feedback control policy with a local domain. Each intermediate behavior takes the system
safely to its intermediate goal, and brings the system state closer2 to the final goal. Put simply, the
policies are sequentially composed to approximate the global policy; hence the namesequential
composition. The benefit is that local policies are easier to define in a way that satisfies the system
constraints.

1Memorylesspolicies depend only on the current state, and not on previous states.
2Here we define “closer” in the sense of remaining actions, and not necessarily closer in the Euclidean sense.

4 c© 2007 David C. Conner

G

Figure1.5: The ideal solution is a global control policy that induces the desired behavior. Here, the
contours represent an iconic view of level sets for some idealized potential function.

The feedback control policies defined in this thesis are specifically designed to satisfy the
low-level constraints of the system over its local domain, while retaining performance and safety
guarantees. Consider the two-dimensional iconic policies represented in Figure 1.6. The small fun-
nels are ordered so that the goal set of one empties into the domain of another, until the final funnel’s
goal set corresponds to the overall goal.

By examining the relationship among domains for a collection of policies, the resulting tran-
sitions between policy domains can be represented as a graph. As the closed-loop behavior of the
policy moves the system from its domain to its associated goal set, if the goal set of one policy is
contained in the domain of another, the first policy induces a transition from its domain to the next.
Figure 1.7 shows a trivial example of this transition relation. Given the local behaviors encoded
by the local policies, planning becomes a problem of ordering the discrete graph. Thus, while the
low-level behaviors are encoded “bottom up” using policies that respect the system constraints, the
planning and reasoning steps can be applied “top down” on the discrete graph. The discrete transi-
tions are realizable by the system because of the guarantees provided by the local feedback control
policies. Planning in this discrete space of policies is easier than planning over the continuous
configuration space, and much more flexible with respect to high-level task specifications.

This approach leverages the strengths of symbolic planning methods and feedback control ap-
proaches, while preserving the guarantees of both. The result is ahybridcontrol system that exhibits
both continuous dynamics and discrete events and/or logic. The key challenge faced by this thesis

c© 2007 David C. Conner 5

G

Figure1.6: Policy composition gives a formal method of approximating the convergence of a global
policy. The two-dimensional iconic funnels represent policies that induce flow over the robot config-
uration space. As shown in the lower left funnel, the close loop action induces flow from the larger
domain into the narrow portion that serves as the goal set. Note, the colors are to help differentiate
different policy domains; they have no special meaning.

in developing these hybrid control systems is to define control policies that respect the system con-
straints and are “composable.”

The benefit of developing suitable policies, and the real power in sequential composition, is
the flexibility of planning in the space of control policies. Because the planning occurs on the
discrete graph, it becomes tractable to plan for multiple goals that depend on information gathered
at run time [24]. The aim is to move beyond simple navigation from point ‘A’ to point ‘B’, towards a
higher level symbolic specification of tasks and goals, while retaining the robustness and guarantees
of feedback control. Instead of requiring each small detail to be specified, we would like to describe
the task at a high level, and have the system autonomously execute in a manner that satisfies that
desired task. This thesis develops techniques that enable expressive and flexible planning with
real systems, operating under real world constraints. We seek to advance symbolicbehavioral
programmingtechniques, and extend their application to highly constrained systems [14, 105].

1.3 Thesis Contributions

The first contribution of this thesis is to refine the idea of “composability” as it relates to the policy
design. In order to realize the benefits of sequential composition, there must exist a collection of

6 c© 2007 David C. Conner

ΦA

ΦB

ΦC

(a)

ΦA

ΦB

ΦC

(b)

Figure 1.7: A more complex behavior can be induced by the composition of relative simple policies:
a) policy composition, b) discrete transitions between policy domains represented as a graph.

local policies that respect the local constraints of the system, while guaranteeing performance over
the local domain. To that end, we enumerate four necessary properties that local policies must satisfy
to be composable. These properties are generally applicable to any dynamic system, and extend the
basic convergence and invariance properties defined in [21]. This thesis extends the types of policies
allowed under sequential composition to include “flow-through” policies in addition to conventional
convergent policies, and develops minor extensions to the allowed relationship among the policies.

Second, we demonstrate a policy design approach that satisfies the necessary properties for
wheeled-mobile robots moving in cluttered environments. Two parameterized policy designs are
presented; one based on level sets and one based on path-following. The thesis defines tractable
techniques for testing that the defined policies satisfy the necessary properties. This includes a new
technique for testing that a given continuous feedback policy is collision free over its domain. Other
policy designs are certainly possible, and may be readily incorporated into the policy composition
framework provided they satisfy the four necessary properties defined in this thesis.

Third, a strategy for partially automating the policy deployment is presented. Leveraging in-
variance properties of the robot model, a limited number of basic maneuvers may be instantiated at
various locations in the environment via rigid body transformation. As this approach only approxi-
mates the ideal global policy, the approach is not necessarily complete; therefore, the thesis defines
a sampling-based approach to assess the relative completeness of the policy deployment. That is,
determine what fraction of the free space is captured by the hybrid control system.

Fourth, the thesis demonstrates a variety of planning approaches over the discrete graph. This
thesis puts several existing approaches to discrete planning into the context of sequential com-
position, and discusses their relative strengths and weaknesses. The approaches range from sim-
ple graph-based Dijkstra’s search, to reactive automata-based approaches that satisfy high level
temporal specifications [68]. Thus, we extend sequential composition to more flexible planning
techniques, while enabling these advance planning techniques to be applied to more complex and

c© 2007 David C. Conner 7

realistic systems. While the discrete planning approaches are not contributions,this thesis allows
these discrete planning approaches to be applied to more complex systems. The planning techniques
are demonstrated via simulations of several robot models and experiments on a real mobile robot.

Finally, the thesis concludes with a discussion of some open problems that would allow even
more expressive and flexible planning over the policies.

1.4 Thesis Overview

Before presenting the extensions to the sequential composition approach, the thesis addresses the
existing literature on the subject. First, to put this work in context, we provide a brief description
of contrasting approaches that address the navigation and control problem. Next, we provide an
overview of the work that inspires this approach. The related work concludes with a discussion of
some discrete planning techniques that may leverage our approach.

Chapter 3 provides an overview of our technical approach. This includes an enumeration of the
generic policy requirements, as well as our extensions to the basic sequential composition approach.
The chapter concludes with a discussion of several approaches to planning in the space of control
policies.

Chapter 4 describes work on fully actuated idealized systems. This serves to solidify the ideas,
and highlight some of the issues. From there, Chapter 5 extends the basic approach to single bodied
nonholonomically constrained mobile robots. This chapter discusses policy design and deployment
approaches, as well has the approach to measure the completeness of the deployment. Chapter 5
makes reference to several appendices that provide details about the specific policy designs.

Chapter 6 presents several advanced demonstrations of planning in the space of control policies.
These demonstrations serve to show the flexibility of the approach, and motivate further research.
Chapter 7 concludes with an overview of some open problems that remain, including some pos-
sible approaches to discrete planning that seek to combine the strengths of the discrete planning
approaches described in the thesis.

8 c© 2007 David C. Conner

9

Chapter 2

Related Work

The work related to this thesis comes in three general areas: contrasting approaches, sequential com-
position, and discrete planning. The first section provides contrast for the approach advocated by
this thesis by giving a broad overview of other approaches to addressing the navigation and control
problem for wheeled mobile robots. As our approach is motivated by the sequential composition
technique advocated in [21], the second section provides an overview and presents work directly
related to sequential composition. The final section describes existing work in discrete planning
that can be used to plan in the space of control policies; leveraging this works allows us to expand
the type of planning used with policy composition,

2.1 Conventional Approaches

Numerous techniques have been developed over the years in an attempt to address the problem of
moving a robot or other dynamical system from one point to another in a cluttered environment;
see [22, 70, 71, 75, 118] for details. Researchers have typically broken the problem into different
parts, only focusing on one part, and leaving the rest to others. Some techniques work only in ideal
conditions; while others solve local problems, but not global problems. This section provides an
overview of three approaches: path planning approaches that consider nonholonomic constraints,
control approaches that attempt to follow paths, and attempts to couple planning and control.

Nonholonomic Motion Planning and control This thesis specifically addresses single-bodied,
wheeled mobile robots subject to nonholonomic constraints, which limit the instantaneous velocity
of a system and complicate the coupled navigation and control problem. This subsection provides
an overview of approaches that specifically address nonholonomic constraints.

To recognize the complexity introduced by nonholonomic constraints, consider the “simple”
problem of stabilizing a system about a given equilibrium point. Brockett’s theorem provides nec-
essary conditions for the existence of a smooth, time-invariant feedback control law that stabilizes
the system about the given point [18]. It is well known that most nonholonomic systems, although
small-time locally controllable, fail Brockett’s test [65, 94]. Several classes of stabilizing feedback
control policies have been developed: discontinuous time invariant, time varying, and hybrid control
policies [65]. Given the complexity of this “simple” control task, it is no surprise that the coupled
navigation and control task for nonholonomic systems is more complex than for holonomic1 sys-
tems.

1We yield to common usage and refer to systems subject to nonholonomic constraints as “nonholonomic systems.”
Systems without nonholonomic constraints are called “holonomic systems.” To be technically correct, it is the constraints
that are classified as holonomic and nonholonomic, not the systems.

Ignoring obstacles for the moment, there are several methods – including sinusoidalinputs,
piecewise constant inputs, optimal control, and differentially flat inputs – that solve the point-to-
point steering problem between two positions using open-loop controls [73, 94]. These methods,
which are sometimes incorporated into the discrete planning systems, are open loop control methods
that do not respect obstacles [65, 72, 94]. Collision detection must be performed by simulating
the system response to determine feasibility in a cluttered environment [53]. These point-to-point
steering methods are strictly open-loop, and not suitable for feedback control. The inevitable errors
that arise during execution necessitate repeated applications of the algorithms to induce convergence
to the goal point.

For a cluttered environment, there are numerous planning techniques for holonomic systems,
but fewer that simultaneously address nonholonomic constraints and obstacles [22, 75]. A common
planning approach is to pretend the system is holonomic and use a standard planning system such as
grid-based planning or Voronoi diagrams. If a nonholonomic system is small-time locally control-
lable, any continuous path can be approximated arbitrarily well [73]. Unfortunately, the methods
used to control the system along arbitrary paths often lead to highly oscillatory motions that require
great control effort. If the path does not respect the system constraints, the resulting motions may
require an inordinate number of control reversals to follow the desired path. Another approach is to
perturb the planned path to respect nonholonomic constraints [111].

Techniques that consider the nonholonomic constraints during planning typically use only a
discrete set of feasible motions. The shortest feasible path (SFP) metric is used to plan paths that
approximate a holonomic path using a finite number of motions [89]. The approach uses the SFP
metric to define the largest ball around the current configuration, and then selects the shortest fea-
sible path to the point on the holonomic path that intersects the ball [120]. Methods based on
dynamic programming determine an optimal path for a discrete set of controls (e.g. hard left, soft
left, straight, soft right, hard right) [5, 39, 76]. Probabilistic roadmaps (PRM) and rapidly-exploring
random trees (RRT) are other discrete approaches to determining feasible paths for nonholonomi-
cally constrained systems [78, 115]. The approaches look for safe feasible paths between the current
point and a chosen sample point. With the exception of dynamic programming, these discrete meth-
ods are not feedback based, and require re-planning if the system deviates from the desired path.

Path Following Control Laws Given a path through the cluttered environment, the system re-
quires a control policy that causes the system to follow the designated path. A path following
control policy is used to determine the control inputs that cause the system to converge to a desired
path if the initial condition is off the path, and to follow the path in spite of disturbances.

The presence of nonholonomic constraints renders the design of path-following control law a
non-linear controls problem. Most path-following algorithms assume continuous motion, with a
non-stationary path defined for all time. This temporarily avoids Brockett’s problem with stabiliza-
tion to a point [29]. The design of the control laws is often based on Lyapunov analysis [32] or
feedback linearization [33, 110].

There are two basic formulations to path-following. In the first, a designated point on the robot
traces a given path in the workspace, without concern for orientation [29]. This may fail in cluttered
environments as the designated point may exactly follow a safe path, yet still allow another point on
the robot to collide with an obstacle. The second formulation attempts to have the robot track posi-
tion and orientation of a path in the free configuration space [32]. The path-following control policy
asymptotically brings the error between the desired path and the actual path to zero. Typically, the
control policy is constructed for a specific vehicle and class of paths [3, 32, 29, 116].

10 c© 2007 David C. Conner

In addition to path-planning, trajectories that specify when the system arrivesat points along
the path may be planned [32, 110]. Trajectory-tracking problems can be problematic if the system
is subject to a constraint that delays the tracking [32]. In this case, the accumulated error may
make the system unstable or require unreasonably high inputs. Another possible problem is that
trajectory-tracking controls may require reverse motions along the path to match the specific time
and position [110]. Unless the time matching along the trajectory is crucial, path-following is often
a better formulation [32, 110].

The path-following control laws are unaware of environmental obstacles; therefore, for a nonzero
initial error or perturbation during motion, the system may collide with an obstacle as shown in Fig-
ure 1.2-b. Path-following may be coupled with local obstacle avoidance [9, 38, 60, 69, 113], but
this may invalidate the convergence guarantees. Thus, if the errors are large enough, the paths must
be re-planned, starting from the current location.

Coupled Planning and Control Some attempts have been made to integrate planning and control,
most notably potential methods and optimal control techniques [93, 104].

Potential functions, which are used despite the well known local minima problem, address the
coupled navigation and control problem by using the potential function’s negative gradient vector
field to determine control inputs [64]. For idealized, holonomic, kinematic systems, the negative
gradient vector, or any positive scalar multiple thereof, may be used directly as control inputs. For
nonholonomic systems, most potential functions do not have gradients that respect the nonholo-
nomic constraints, which makes direct usage of the gradient infeasible.

For idealized holonomic second-order dynamical systems, the addition of a dissipative term in
the control law results in convergence to a local minimum for any system whose total energy is
less than or equal to the potential on the boundaries of the free configuration space [64, 63]. Most
potential methods used in control do not account for control input bounds of second-order dynamical
systems. Many of these methods have unbounded potential at the obstacle boundary [104]. Even
with bounded potentials, the control laws may not respect arbitrary dynamic constraints on control
inputs if the potential function does not account for the total energy [64]. For example, a system
near a boundary moving towards the boundary may not stop before collision with the boundary
under gradient control if the total energy is not respected. The magnitude of the potential gradient
may also vary greatly, and therefore, be unsuitable for direct control.

Optimal control techniques are closely related to potential-based navigation techniques. Locally,
by following the negative gradient, a system maximally reduces the potential. Optimal control tech-
niques build a special potential function, called avalue function, such that a local decision induces
the optimal trajectory for a given cost function. Given running and terminal cost functions, the value
function is the solution to the Hamilton-Jacobi-Bellman (HJB) partial differential equation [35].

A defined cost structure is fundamental to the use of optimal control techniques [47]. If this cost
structure is not givena priori, the cost structure must be designed to generate the desired behavior,
while guaranteeing some measure of safety and robustness. The design of such a cost/reward struc-
ture is difficult because the induced behavior is only known after the result is calculated. Therefore,
the design of a suitable cost function is an iterative process – define a cost function, compute the
controller, run experiments, evaluate the results, and modify the cost function as necessary. Given
the value function, the optimal control formulation results in a global control policy that specifies
the optimal control action for a given state.

Solving this global control problem is one of finding the appropriate value function for a given
cost function by solution of the HJB; however, several problems arise. In general, globalC1 smooth

c© 2007 David C. Conner 11

solutions to the HJB do not exist [35, 92]. A well known consequence of thelack of globalC1 con-
tinuity is that the optimal solutions arefragile, and may be unstable for minor perturbations [57]. As
HJB equations do not generally have a closed form solution, they are typically solved numerically
using finite element, finite difference, or dynamic programming methods [35, 92].

Dynamic programming (DP) can be used to solve the HJB numerically using a cost-to-go itera-
tion scheme by discretizing the state and control action space [6]. The discrete action space can be
used to model the impact of nonholonomic constraints. Although DP is extremely powerful, it suf-
fers from the well knowncurse of dimensionality, and is limited to low dimensional state spaces or
coarse approximations. Numeric solutions to the HJB equation often require adaptive discretization
to yield an acceptable solution [92].

There have been a few attempts to address the coupled navigation and control problem for
nonholonomic systems. A method based on potential fields uses resistive networks to approximate
the nonholonomic constraints [27]. This approach requires a discretization of the configuration
space, and is therefore subject to numerical difficulties when calculating derivatives necessary for
feedback control.

Other approaches define invariant sub-manifolds in configuration space that contain the goal [50,
56, 85]. While the nonholonomic constraints are generally not integrable, constraints can be added
that render the system integrable on a configuration space sub-manifold. On this sub-manifold,
the control naturally respects the constraints and it is possible to steer towards a designated goal
contained in the sub-manifold. The hybrid control approach drives the system to some point on
the sub-manifold, and then along the sub-manifold to the goal. While these methods are suitable
for feedback control implementations, determination of a suitable sub-manifold can be intractable;
particularly for systems where the invariant sub-manifold is not given in closed form, but must be
approximated through an iterative process. The approaches also involve designing several functions
that require insight into the specific problem and system constraints. While suitable for feedback
over local domains, they are generally not applicable to cluttered environments due to the difficultly
of defining the sub-manifold that avoids obstacles.

2.2 Policy Composition Approaches

Due to the limitations of existing approaches to addressing the coupled global navigation and con-
trol problem, this thesis advocates usingsequential compositionof local control policies, which are
easier to define in a way that satisfy system constraints [21]. Sequential composition enables the
construction of switched control policies with guaranteed behavior and provable convergence prop-
erties. Since this thesis uses sequential composition as a tool to construct hybrid control policies,
this section begins by describing the basic sequential composition approach defined in [21]. This
enables a better understanding of how our work extends and compliments sequential composition.
The section provides examples of applications of sequential composition to existing systems, and
concludes with a discussion of some related approaches.

2.2.1 Basic Sequential Composition

The idea behind sequential composition is to compose multiple control policies in a way that en-
larges the overall domain of attraction, while preserving the underlying convergence guarantees.
Burridgeet al. [21] build on this simple idea by formally defined what composition means, and
defining an algorithm for constructing a hybrid control policy using this idea. As later chapters will
extend the basic approach, this section presents a formal overview of their work.

12 c© 2007 David C. Conner

Sequential composition is based on a formal notion ofpreparesdefined among policy do-
mains [21]. The prepares concept is built upon the idea of “pre-image back chaining” [86]. For
a given control policy, define thesafe domain of attractionas the largest region of state space that
does not intersect an obstacle and where the closed-loop behavior does not allow the state to exit the
region, and induces convergence to the policy’s goal. In other words, the safe domain of attraction
is positive invariant; that is, for any initial condition within the safe domain of attraction, the state
does not exit the domain under the influence of the policy. Henceforth, the termdomainis synony-
mous withsafe domain of attraction. For a given policy, the domain is the pre-image of the goal set
in the sense that any state in the domain is mapped to the goal set by the action of the policy.

Sequential composition defines a formal relationship between policy domains. Let a finite col-
lection of control policies,Λ = {Φ1, . . . ,ΦM}, defined over the free state space of a given system
be given, and assume at least one policy’s goal corresponds to the overall goal. Given two con-
trol policies fromΛ, with domainsD(Φi) and goal setsG (Φi), Φ2 is said toprepareΦ1, denoted
Φ2 � Φ1, if G (Φ2) ⊂ D(Φ1).

By properly prioritizing the collection of policies, and switching to a higher priority policy once
the state enters the domain of the higher priority policy, it is possible to construct a switching control
policy with a larger domain of attraction than any single policy [21]. The domain of attraction of
the switched policy is equal to the union of the domains of the component policies, as shown in
Figure 2.1; the domain over which a given policy is active is determined by the switching strategy.
It is easier to define policies that respect the system constraints over a limited local domain; by
composing local policies that respect constraints, the hybrid control policy defined by the local
policies and switching strategy also respects the constraints. By adding local policies that capture
additional regions of the free state space, an almost global control policy can be defined.

Prioritizing the policies is done in relation to an overall goal and the prepares relationship be-
tween policy domains. The prepares relationship between any two policies in the collectionΛ
induces a directed graph,ΓΛ, over the collection of instantiated control policies. A directed edge

ΦA

ΦB

ΦC

Figure 2.1: Burridge-Rizzi-Koditschek defined a switching strategy basedona total ordering of the
policies.

c© 2007 David C. Conner 13

connecting two nodes inΓΛ correspondsto a transition that may occur when the state of the system
enters the domain of the other policy; this transition is guaranteed by the prepares relationship. The
graphΓΛ, which we term theprepares graph, defines atransition relationbetween control poli-
cies [23]. The prepares graph approximates the continuous transitions as a set of discrete transitions
between nodes that represent the local policy domains. The act of assigning a priority to each policy
is a form of discrete planning using the prepares graph.

In general, the prepares graphΓΛ is cyclic, which can lead to limit cycles that do not reach the
goal policy; however, a directed acyclic graph,Γ′

Λ ⊂ ΓΛ, may be generated over the collection of
policies. Figure 2.2 shows a simple example. In [21] this is accomplished by searchingΓΛ breadth
first, beginning at the node corresponding to the policy that stabilizes the overall goal, and adding
only those links and nodes that connect back to previously visited nodes. The directed acyclic
graphΓ′

Λ can be viewed as an ordering over the collection of control policies. By construction,
the directed acyclic graph is a connected graph containing a node corresponding to the policy that
stabilizes the overall goal. Switching between policies inΓ′

Λ is guaranteed to bring the system to
the overall goal. Under the transition map induced by the prepares relationship,Γ′

Λ represents a
finite state automata [48].

Given the collection of policiesΛ, the switching strategy defined byΓ′
Λ induces an overall

switching control policyΦ. The union of the domains of the policies included inΓ′
Λ gives the

domain of the overall policy; that is

D(Φ) =
⋃

Φj∈Γ′
Λ

D(Φj) . (2.1)

The collection of policies inΛ and the switching strategy defined by the orderingΓ′
Λ is called a

deployment.
The overall control policy induced by sequential composition is fundamentally a hybrid control

policy [12, 14, 48]. The composition of these local policies in a hybrid systems framework enables
analysis on the discrete representation of the transitions between policy domains [14, 21]. Given
knowledge of policy domains containing the current state, one may analyze whether another policy’s
goal is reachable usingΓ′

Λ, without the need to re-analyze the underlying continuous system [48].
This gives a simple discrete approach to deciding if a given navigation problem is solvable with
a particular collection of policies. This ‘reachability’ analysis may be done onΓΛ prior to plan-
ning, or implicitly during construction of the acyclic graphΓ′

Λ. That is, starting from the overall

ΦA

ΦB

ΦC

ΦD

ΦE

(a) Simple prepares graphΓΛ with 3 cycles

ΦA

ΦB

ΦC

ΦD

ΦE

(b) Γ′
Λ tree

Figure 2.2: The graph on the left has 3 cycles; the tree on the right obeys the sample prepares
relationship while protecting against limit cycles. In this case, the goal node isΦA.

14 c© 2007 David C. Conner

goal, any policy added to the orderingΓ′
Λ candrive the configurations in its domain to the goal by

construction.
The stability of the underlying control policies guarantees the stability of the overall switched

policy because the ordering results in monotonic switching [21]. That is, the policies switch from
lower priority to higher priority policies. This obviates the need for complex hybrid stability analysis
of the form given in [11, 13, 30, 79]. Disturbances, which may carry the state to the domain of a
lower priority policy, are robustly handled provided their magnitude and rate of occurrence is small
compared to the convergence of the individual policies [21]. The overall control policy resulting
from the partial order covers the largest region of the free state space for a given collection of control
policies, while guaranteeing that any state in the union of the individual domains is ultimately
brought to the goal.

Burridgeet al. [21] demonstrate sequential composition on a robot that juggles a ping-pong
ball by repeatedly batting the ball with a paddle. The robot is tasked with moving the ball by
juggling through its environment while avoiding obstacles. In this case, the obstacles are sensor
limits (camera field of view) and a physical obstacle in the workspace. Burridgeet al. define a
policy with free parameters; changing the parameter values changes the bouncing ball’s steady
state horizontal position and apex height above the horizontal plane. A policy with free parameters
is called ageneric policy; assigning specific parameters values results in aninstantiationof the
generic policy. By making slight modifications to the basic policy, they define a collection of generic
policies termed apalette[21] .

Burridge et al. [21] use a manual approach to ordering the policies. Starting with a single
policy that stabilizes the overall goal, multiple policies are instantiated in the system’s free space by
specifying a collection of set-points and other control policy gains for generic policies chosen from
the palette. These instantiated policies form the collectionΛ. The instantiation of the policies is
performed manually.

The policies are added in sequence to create a total orderΓ′
Λ of the policies while the collection

Λ is being defined; the prepares test is performed against the composition of all higher priority
policies. Given the current state estimate, the complete list of policies is searched from highest
priority to lowest priority for a policy that contains the current state; that policy is then executed.
The experimental results demonstrate that the sequential composition technique repeatedly brought
the ball to the overall goal in spite of perturbations, thus demonstrating the inherent robustness of
the technique [21].

2.2.2 Applications of Sequential Composition

The idea of sequential composition has been used for several robotic systems. In this sub-section,
we provide an overview of these related works.

Rizzi [105] uses sequential composition to simplify motion programming for the case of an
idealized holonomic second-order dynamical robot,q̈ = u with both the control inputsu and con-
figuration q in IRn. The robot is subject to velocity and acceleration constraints in the form of
Euclidean norm bounds. Sequential composition guarantees the overall behavior of the system by
using control calculations specified over a convex polytope in the configuration space. Rizzi spec-
ifies the global motion by specifying a goal point for a single policy to lie within an overlapping
convex polytope.

By specifying a goal point within the boundary of an overlapping polytope, the control policies
over each polytope can be composed to move the idealized system through space into the domain
of another switched policy defined over the adjacent polytope [105]. Since the goal point of one
polytope is at rest, the policy of the first polytope trivially prepares the policy of the next polytope,

c© 2007 David C. Conner 15

provided the goal point is included in the interior of the next polytope. By chaininga series of
overlapping polytopes, with appropriate goal points, the system is induced to move to an overall
goal based on the sequential composition of the individual policies. Thus, if the initial state lies
within the savable set of any policy in the deployment, the system is guaranteed to be brought to
rest at the overall goal.

Quaid and Rizzi [103] extend this basic approach to more complicated bounds on acceleration
and velocity found with planar motors. Safety is enforced in a dynamic multi-robot environment
by only activating policies whose domain does not overlap with a polytope corresponding to a valid
policy of another robot.

Yang and Lavalle [123] develop a similar approach to Rizzi [105], except their version is re-
stricted to kinematic systems and does not consider input bounds. They define a potential function
over a ball in configuration space. The balls are then distributed throughout configuration space
using a graph-based sampling technique. The overlapping balls serve the same function as the
overlapping polytopes in Rizzi’s approach. In parallel work, Brock and Kavraki [17] use balls in
workspace to define a connected tunnel through workspace, and then use a potential-based control
policy to drive the system through the tunnel. Pathak and Agrawal [98] apply Brock and Kavraki’s
method to circular wheeled mobile robots by defining convergent switching control policies over
circular regions of obstacle free space.

Sequential composition has also been used to control wheeled mobile robots. Kantor and
Rizzi [55] define visual servoing control policies for a nonholonomic unicycle with a limited field of
view. Their approach uses variable constraint control to define and parameterize individual control
policies. Patelet al. [97] use sequential composition to define switching policies for a nonholo-
nomic wheelchair that navigates through a doorway using visual servoing with a limited field of
view. In both cases, the control policies are designed based on careful analysis of the system, its
constraints, and the problem at hand; the deployment is carefully constructed by hand to enforce the
prepares relationship.

Both Kantor’s and Patel’s approaches have the key feature that many of the individual policies
are not designed to converge to a single point. In the later example, the “goal” of the highest priority
policy is to drive through a doorway [97]. It is assumed that another control policy will become ac-
tive after the vehicle passes through the doorway. This thesis expands upon this idea offlow-through
policies, and formalizes some extensions to the basic sequential composition technique [25].

Lindemann and LaValle [83, 82, 84] follow our approach [25], and define flow-through vector
fields over disjoint regions of free space. Their approach uses a different vector field generation
technique, and is extended to cylindrical algebraic decompositions. The work is applied to point
nonholonomic systems with bounded steering, but unbounded control inputs [84]. Their work is
fundamentally an application of the sequential composition techniques advocated by this thesis.
Their approach differs from this work in that their focus is on theoretical completeness and smooth-
ness for simpler systems, while this thesis explicitly considers the interaction of robot body shape
and input bounds, and discusses the planning aspects of the work in more detail.

Related Approaches There has been other work in control policy composition techniques that
are not directly derived from sequential composition, even though the approaches are similar or in
some cases an extension of the basic idea.

Branicky [14, 15] describes abehavioral programmingtechnique in a hybrid systems formalism
that is congruous with the sequential composition approach advocated in this thesis. Fast marching
methods were used to define local policies for fully actuated systems. These local policies obey a
prepares relationship, which allow them to be composed. Branicky focuses on the high-level view

16 c© 2007 David C. Conner

of the approach, and its application as a “middle-out” approach to planning. Insteadof a top-down
conventional planning approach, or a bottom-up reactive approach, these papers advocate a “middle-
out” approach where there is a systematic way of predictably translating symbolic task descriptions
into feedback control policies.

The “flow-through” policy design approach has been applied to piecewise affine systems using
policies defined over simplices, which are triangles in the plane or pyramids inIR3 [7, 44, 45, 107].
Habetset al. [44, 45, 46] define necessary and sufficient conditions for piecewise affine control
policies that drive the system to a designated facet or set of facets in order to address the reachability
problem for a hybrid system defined over a collection of simplices. This leads to the synthesis of
switching control policies that flow from simplex to simplex toward an overall goal. While typically
described in a hybrid systems formalism, these approaches are instances of sequential composition
of local policies. Roszak and Broucke [107] provide new necessary and sufficient conditions for
n-dimensional linear affine systems withn−1 inputs. These conditions reduce the general problem
to a set of at mostn linear programming problems.

Belta et al. [7] use piecewise affine control policies defined over simplices to synthesize a
hybrid control policy. In their work, the focus is on planning in the discrete abstraction and not
defining a global policy. Their approach defines a sequence of simplices that must be navigated,
and then defines policies over each simplex that induces the desired closed-loop motion. These
methods were originally developed for idealized holonomic systems, but may be applied to point
nonholonomic systems using feedback linearization [7]. However, these approaches do not apply to
systems with non-trivial body shapes, and cannot guarantee that the linearized system does not “cut
a corner” between polytopes and collide with an obstacle.

Frazzoliet al. [41] uses language similar to sequential composition to describe amaneuver au-
tomaton. There the focus is on defining the relationship between open-loop motion primitives, and
specifying which motion primitives may be concatenated based on a prepares-style relationship;
this contrasts with conventional dynamic programming methods which implicitly assume that all
motions in the discrete set are always feasible. The maneuver automaton is used in an open-loop
motion planning strategy that uses optimal control over the finite set of motion primitives to deter-
mine the values of certain free parameters. The previously selected maneuvers constraint the set
of admissible maneuvers for the next step. By obeying the relationships specified in the maneuver
automaton, aggressive maneuvers can be incorporated into the planning framework. The maneuver
automaton is fundamentally an open-loop planning method, and does not directly specify domains
or feedback control policies.

Several existing control paradigms use a more general form of policy composition. One example
is variable structure control [31]. More closely related to sequential composition is work on “patchy
vector fields” [2]. These approaches generally consider stabilization of nonlinear systems, and are
not concerned with the planning across the composed policies, nor navigation problems.

2.3 Discrete Planning Methods

The works described in the previous section have been applied to solving a particular navigation
problem, that is defining a global control policy that brings the system to a designated goal point.
This does not not fully exploit the power of sequential composition. In this section, several discrete
planning approaches are described at a high level; these approaches allow flexible symbolic plan-
ning on the prepares graph defined by policy composition. Chapter 3 describes the approaches in
more detail, and discusses their pros and cons as they relate to specific applications of sequential
composition.

c© 2007 David C. Conner 17

The most basic approach, as followed by [21], is to define a total order of thepolicies. Here,
each policy is assigned a priority ordering based on the prepares relationship. The ordering may be
searched from highest priority to lowest, with the highest priority policy whose domain contains the
current state being executed. This ordering may be constructed without explicitly constructing the
entire prepares graph [21]. This approach is useful for bringing the system to a single overall goal.

Given the explicit prepares graph, which may very well be cyclic, the graph may be converted to
a tree using basic graph search algorithms such as Dijkstra’s algorithm orA∗[108]. Variants ofA∗

such asD∗, D∗-lite, andDD∗-lite are used to rapidly reorder policies when some policies become
invalid due to additional information gathered during execution [114, 81, 88]. TheD∗ algorithm,
originally developed for grid based path planning, facilitates fast re-planning based on changes in
the graph cost structure [114]. A similar, but algorithmically different version, calledD∗-lite has
been applied to Markov Decision Processes, which are similar to graph structures but support non-
deterministic outcomes [81]. The approach uses a Mini-max planning algorithm to plan for the best
action considering the worst outcome of each transition.

Given an appropriate transition relation, like the prepares graph, recent work has focused on
symbolic planning that satisfies high-level specifications, and tasks with sub-goals that temporally
depend on each other. Model checking tools [23] have been used to generate sequences of policies
whose invocation induce behaviors that satisfy high-level specifications given in linear temporal
logic [36, 37, 61]. Linear temporal logic (LTL) [34] combines the standard logic operators ‘NOT’,
‘AND’, and ‘OR’ with temporal connectives such as ‘NEXT’, ‘ALWAYS’, ‘EVENTUALLY’, and
‘UNTIL’. This allows specifications such as “visit region A after region B, but never region C.”
Using the prepares graph, a sequence of policies is defined that induces the correct behavior. This
model checking-based planning produces a sequence of policies and not a global policy; the plan-
ning step must be rerun in the face of disturbances [36].

As a step toward a feedback-based temporal planning, Kress-Gazitet al. [68] use the automata
synthesis algorithm of [102] to generate an automaton from the prepares graph. Using the policies
described in Chapter 4, [68] generates an automaton that executes local feedback control policies in
order to satisfy temporal specifications. As the system is an automaton, and not just an open loop
sequence of policies, the system is able to respond to environmental information gathered during
run time. The closed-loop behavior satisfies the high-level specifications encoded in a subset of
LTL.

18 c© 2007 David C. Conner

19

Chapter 3

Overview of Technical Approach

This chapter presents extensions to the basic sequential composition technique described in [21].
These extensions allow for more general policy types and prepares relationships, thereby increasing
the flexibility of the approach. General definitions that help formalize the discussion are given;
model specific details are withheld until Chapters 4 and 5. This chapter defines the requirements for
“composable” policies that later guide the development of the feedback policies.

The chapter’s first section gives general definitions and notation used throughout the thesis.
The second section briefly describes the use offlow-throughpolicies. The chapter’s third section
describes four policy requirements that are necessary for composable policies. The focus is on the
high-level requirements; later chapters deal with the specific requirements of various robot models
and specific policy designs. The fourth section discusses the basic approaches to planning in the
space of control policies. This section serves to highlight the issues and trade-offs involved in
several approaches by focusing on a simple example.

3.1 Basic Definitions

In order to develop our approach in a formal sense, we present a series of definitions. The robot is a
single rigid body that moves on a bounded planar workspaceW ⊂ IR2. The workspace is cluttered
with a finite number of obstacles, which are represented as unions of convex regionsOi. The
robotconfiguration, denotedq, is the minimum size set of variables required to specify the position
of every point on the robot [22]. The number and type of variables that are required varies with
different systems. The configuration spaceQ is the space of all possible configurations. LetR (q) ⊂
W denote the workspace area occupied by the robot at configurationq. A configuration is said to be
collision free if, for all obstacles,R (q)

⋂

Oi = ∅. Thus, the obstacles in the environment constrain
the set of admissible collision free robot configurations; the set of collision free configurations, or
free configuration space, is denotedQfree ⊂ Q, where

Qfree =

{

q ∈ Q | R (q)
⋂⋃

i

Oi = ∅
}

.

For a more in depth presentation of these definitions, refer to Appendix A.
Thestateof the system is the minimum information necessary to specify the motion of the sys-

tem. Forkinematic, or first-order systems, the state is simply the configurationq. By definition, the
state of second-order systems is{q, q̇}. Denote the state space of the system, whether kinematic
or second-order, asX . For kinematic systems, the free state space is simplyXfree = Qfree. For

second-order systems, the naive definition isXfree = TQfree, the tangent bundle of the free con-
figuration space. However, for systems with bounded accelerations, there are velocities at points in
the free configuration space that make collision unavoidable; thus,Xfree ⊂ TQfree, with regions of
inevitable collisionexcluded [40, 77].

The focus in this thesis is on defining memoryless state feedback control policies. A feedback
policy, denotedΦ : X → U , is a mapping between the system state and its allowable control inputs,
whereU denotes the bounded input space. The policy generally has a limited domainD(Φ) ⊂ X .
We consider the general nonlinear equation of motionẋ = f (x, u) wheref : X × U → TX for
x ∈ X andu ∈ U . Therefore, the closed loop system dynamics are given byẋ = f (x,Φ(x)),
which defines a vector fieldX : D(Φ) → T X over the policy domain withX = f ◦ Φ.

Define the closed-loopflow,Xt (x), of the vector field, where the parametert specifies motion
along integral curves of the vector field from initial conditionx; that is, how the system moves as
time evolves. Figure 3.1 provides a schematic picture of this definition. The flow has the following
properties:X0 (x) = x and d

dt
Xt (x) = X (Xt (x)) = f (Xt (x) ,Φ(Xt (x))). Implicit in this

definition is the assumption that composition of the policy and the equations of motion satisfy the
requirements for the existence of a solution to the ordinary differential equation encoded in the
vector field [8, 117]. Forconvergent policies, there is a designated goal setG (Φ) ⊂ D(Φ) such that
for all x ∈ D(Φ), there existst ∈ [0,∞) such thatXt (x) ∈ G (Φ). First, unlike the prior work that
considered only point goals, this definition allows for full dimensional goal sets. That is, the goal
can be a neighborhood and not just a single goal point. Second, note that this definition does not
require the state to remain in the goal set, which opens the door toflow-throughpolicies.

3.2 Flow-through Policies

Where conventional sequential composition techniques [21, 105] used asymptotically stable state
feedback control policies, this thesis allows what we term asflow-throughpolicies.

Definition: Flow-through policy: A flow-through policyis a policy whose goal set is on the bound-
ary of the domain. Invoking the policy will cause any initial state in the policy domain to exit
the domain by passing through the goal set. The system does not stop in the goal set.

x0

X1.0 (x0)

Figure 3.1: The vector field flow for an initial pointx0 is shown by the dotted line. The point
indicated byX1.0 (x0) indicates the point obtained by flowing along the vector field from the initial
point for one unit of time.

20 c© 2007 David C. Conner

In other words, the policy eventually brings all states within its domain to the goal set,but the state
does not necessarily remain in the goal set.

Flow through policies have several benefits. First, flow-through policies naturally encode certain
high-level behaviors such as “leave this room via the doorway” [97]. Second, flow-through policies
allow the policy designer to put off the implications of Brockett’s theorem, which provides necessary
conditions for the existence of smooth stabilizing control laws [18]. This gives the control designer
more flexibility by allowing the local control policies to be smooth and time invariant, while relying
on the switching strategy of the overarching hybrid control policy to reconcile the constraints of
Brockett’s theorem. Finally, flow-through policies give the control designer the freedom to match
vector fields at policy boundaries.

The major drawback to flow-through policies is the more complicated prepares test. Whereas
asymptotically stable policies have a trivial prepares test based on a single configuration at rest [105],
flow-through policies require a prepares test based on the full state. For kinematic systems the test
remains a configuration-based test; however, for second order systems the test is based on configu-
ration and configuration velocity.

3.3 Composability Requirements for Local Policies

As this thesis seeks to compose local feedback control policies as illustrated in Figure 3.2, the
question arises, “what are the necessary properties of policies that allow composition within the
sequential composition framework?” In this section, four necessary properties are defined that make
the feedback control policies composable. Here the focus is on basic requirements; Chapters 4 and 5
specialize these general requirements to the specific system models and control policies developed
therein. To satisfy the requirements, a policy must be realizable on a given system; that is, a given
policy may satisfy the requirements for one system but not another.

3.3.1 Collision Free

For a policy to be valid within the sequential composition framework, it must be safe. That is, over
its entire domain it must be collision free. Consider Figure 3.3, the same policy domain can be safe

ΦA

ΦB ΦC

ΦD

G (ΦA) ∂D(ΦA)

Figure 3.2: Composition of multiple policies. The two-dimensional iconic funnels represent the
boundaries of multiple control policies; the goal set and domain boundary ofΦA are labeled.

c© 2007 David C. Conner 21

(a) (b)

Collision! - Policy Not Valid

(c)

Figure3.3: The policy domain must lie within the free state space of the vehicle. That is, all states
in the domain must be free of collision for a specific vehicle size and shape. Here, the iconic
funnels representthe workspace projection of a sliceof a idealized policy domain. The policy is
defined for the(x, y, θ) reference on a rigid body; the slice is taken at a fixed body orientation.
Three different vehicle body sizes are shown as dark polygons; the light gray polygons shown in
the figures represent the convolution of each vehicle body along the domain boundary. The vehicles
shown at (a) and (b) are collision free at this orientation; vehicle (c) will collide for some states in
this domain.

or unsafe based on the size and shape of the vehicle. It is therefore imperative that any proposed
policy design approach have a tractable method of verifying the safety of an instantiated policy;
that is, a policy whose free parameters are assigned specific values that give the policy domain a
particular shape. Chapter 5 presents a method that maps points on the policy domain boundary to the
full body extent in workspace. This allows for direct intersection tests with the workspace obstacles.
This approach greatly simplifies the collision tests, relative to the alternative of constructing the free
state space boundary by enlarging the obstacles, and excluding the regions of inevitable collision,
and then testing for intersection with the policy domain.

3.3.2 Convergent in Finite Time

For each policy deployed within the sequential composition framework, it must be shown that the
policy induces convergence to its goal set in finite time. In order to do discrete planning on the
graph, it is necessary to guarantee that the desired discrete transition is eventually enabled. If the
system does reach its goal set, and the two policies have a prepares relationship, then the transition
is enabled. This contrasts with a system that stops inside the policy domain, or engages in a limit
cycle, and thus never enters the goal set. In these cases, the system may not reach the domain of the
next policy. Note that the behavior within the goal set is unrestricted; stopping within the goal set is
allowed, as is limit cycle behavior.

Formally, this requirement is for all statesx ∈ D(Φ), there exists a finite timeT ∈ [0,∞) at
whichXT (x) ∈ G (Φ) for X = f ◦ Φ. Obviously, for good performance, the maximum elapsed
time taken for any point in the policy domain to reach the goal set should not be relatively large.

22 c© 2007 David C. Conner

3.3.3 Conditionally Invariant

To guarantee that a policy is safe to invoke, the system must remain in the safe domain of the
policy until the time at which the state enters the goal set. This property, termedconditional in-
variance[56], requires that once a policy becomes active for any state in the domain, the system
state does not exit the domain of a policy except via the designated goal set as long as that policy
remains active. Formally, the domainD(Φ) is conditionally-positive invariantunder the influence
of policy Φ with goal setG (Φ), if for all statesx ∈ D(Φ), T ∈ [0,∞) is the smallest time such that
XT (x) ∈ G (Φ), andXt (x) ∈ D(Φ) for all t ∈ [0, T]. For flow-through policies, once the system
state exits the domain via the goal set, the overall safety of the approach is dependent on switching
to another safe policy. By composing only safe policies according to the prepares relationship, the
overall hybrid control strategy is safe.

To enforce conditional invariance, the policy is subject to the necessary restriction that for each
state on the domain boundary there exists a control input that induces an inward pointing velocity
along the domain boundary, excluding the goal set for flow-through policies. For a statex on the
domain boundary, and outward pointing normaln (x), the induced velocity is constrained such that
n (x) · ẋ < 0; as shown in Figure 3.4. Given the equations of motion, this requirement can be
rewrittenn (x) · f (x, u) < 0. Therefore, the minimal necessary condition for conditional positive
invariance is that for all boundary pointsx ∈ ∂D(Φ) the set{u ∈ U | n (x) · f (x, u) < 0} is not
empty. Given a bounded input set, this constraint has the effect of limiting the size and shape of
the policy domain boundary. Chapter 5 shows how to map this boundary normal constraint for each
state into a half-space constraint on the bounded input space; this enables a simple test for validity
across the policy domain boundary.

n

ẋ

Figure 3.4: The integral curves of the closed-loop system can cross the domainboundary only at the
goal set. Thus, for points along the domain boundary, the induced velocity must be inward pointing.
That is ẋ (t) · n (x (t)) < 0, wheren (x) is an outward pointing surface normal atx (t) on the
boundary anḋx (t) is the system velocity under the influence of the policy.

c© 2007 David C. Conner 23

3.3.4 Efficient Inclusion Tests

As this hybrid control scheme is to be executed in real time, and the method is based on testing for
transition from one domain to another, the system must have efficient tests for domain inclusion.
The need for efficient tests, which may be calculated over many policies during a given control
calculation, guides the choice of policy representation. Consider the states illustrated in Figure 3.5.
Statex1 is in the domain ofΦA but notΦB, statex2 is in the domain of both, and statex3 is outside
the domain of bothΦA andΦB. There are several possible domain representations for a given
policy. Chapters 4 and 5 describe simple geometric shapes used to define the policy domains in this
thesis.

In summary, policies that respect the system constraints, have simple inclusion tests, are com-
pletely contained in the free state space, are conditionally invariant, and have a vector field flow that
converges to a well defined goal set in finite time may be deployed in this sequential composition
framework. Given a specific system model, workspace obstacles, and bounded input setU , these
conditions limit the size and shape of the policy domains. Chapters 4 and 5 present the design of
severalgenericpolicies that satisfy these requirements for a variety of system models. These poli-
cies serve as examples; any policy that satisfies the requirements given here may be incorporated
into the hybrid planning and control framework described in this thesis.

ΦA

ΦBx1 x2

x3

Figure 3.5: Successful operations depends on simple and efficient domain inclusion tests. Pointx1

is in the domain of iconic policy A only, pointx2 is the domain of both policies A and B, and point
x3 is outside of both domains.

24 c© 2007 David C. Conner

3.4 Extended Prepares Definition

Sequentialcomposition, as defined by [21], specifies a relationship among the policies. Finite
time convergence coupled with conditional positive invariance induces a transition relation between
a given policy domain and the domain of another policy which contains the goal set of the first
policy. Recall from Section 2.2.1, that this pairwise relation between policies is called aprepares
relationship, denotedΦj � Φi [21]. In order to induce a prepares relationship withΦi, the size of
the goal set ofΦj is necessarily limited because the goal set must be contained in the domain ofΦi,
which is a bounded region.

To provide more flexibility in planning, it is useful to consider larger goal sets not covered by a
single policy domain. Therefore, we extend the conventional definition ofpreparesfrom a relation
between two policies, to a relation between a policy and a set of policies.

Definition: Prepares: A selected policy,Φi, preparesa set of policies if the goal set of the selected
policy, G (Φi), is contained in the union of the domains of the policies in the set. That is,
Φi � {Φj} if G (Φi) ⊂

⋃

j D(Φj).

An example is shown in Figure 3.6-a.
This added flexibility in the definition of prepares introduces added complexity to the discrete

transition relation encoded in the prepares graph. Thus, the ability to define larger goal sets via
the extended prepares definition bears a cost that is borne by the discrete planning. The flow along
a vector field is mathematically determinate; therefore, from any initial condition within the sin-
gle policy the flow will result in a transition specific policies in the union. On the other hand,
the discrete transition relation encoded by the extended prepares relationship is an approximation.
From the point of view of the discrete relationship, the transition is non-deterministic, and can-
not be represented by a simple graph. The nondeterminacy can be represented as anaction with
multipleoutcomes, as shown in Figure 3.6-b. This representation is common with Markov Decision
Processes (MDP) [81, 122]. From the perspective of the discrete planning system, the choice of out-
come isexternallyimposed on the discrete transition relation by the closed-loop system dynamics.

ΦA

ΦB

ΦC

ΦD

(a)

ΦA

ΦB

ΦC

ΦD

(b)

Figure 3.6: Example of the extended prepares definition using iconic funnels. a) PolicyΦD prepares
neitherΦA nor ΦB, but does prepareΦA

⋃

ΦB andΦC . b) Transition relation. From the discrete
planning perspective, the choice of transition fromΦD to ΦA or ΦB is non-deterministic; that is,
it is imposedexternallyby the closed-loop system dynamics. The discrete planning method must
account for either possibility.

c© 2007 David C. Conner 25

So long as the planning system takes each possible outcome into account, the transitionrelation is
valid for planning. We will abuse notation and continue to refer to the transition relation as a “pre-
pares graph”, even for the case of non-deterministic outcomes induced by the extended prepares
relationship.

3.5 Policy Space Planning

This section highlights several issues involved in planning over a collection of control policies
that satisfy the above requirements. Several approaches to defining switching strategies among the
policies are discussed; these approaches make use of existing discrete planning techniques. The
discussion extends the basic partial order approach presented in [21]. This thesis work enables ad-
vanced planning techniques to be applied to systems with more complex dynamics and constraints.

The planning takes place in the space of instantiated local feedback control policies. Recall from
Section 2.2.1, that thepaletteis a collection of generic policies; that is policies with free parameters.
Policies areinstantiatedby assigning specific parameter values to a generic policy chosen from the
palette. Given a collection of instantiated policies, which we call asuite of policies, planning
involves defining a switching strategy among those policies to address a given task. The suite of
policies and the switching strategy is called adeployment.

To illustrate the types of planning that are possible on the discrete prepares graph, consider the
“toy” example shown in Figure 3.7. Here 26 policies are instantiated over the workspace with three
obstacles; these policies make up the suiteΛ = {ΦA, . . . ,ΦZ}. The policy domains are shown in
Figure 3.7-a, and the associated prepares graph,ΓΛ, is shown in Figure 3.7-b. The figure shows one
example of the extended prepares definition withΦV � {ΦX ,ΦW }. Two policies,ΦY andΦZ , do
not prepare any others. As is generally the case, the prepares graph is cyclic.

In the discussion that follows, some planning methods use a cost associated with each transition
to facilitate policy ordering. In this example, a heuristic cost has been assigned to each edge in the
graph shown in Figure 3.7-b. This section does not address how the costs are assigned.

In the subsequent discussion, the switching strategies are often modeled as finite automata, with
nodes and transitions between nodes. For each node there is an associated policy that is executed
upon transition into the node. Initially, there is a one-to-one correspondence between nodes and
policies; later, as temporal dependencies are incorporated, the automata will have multiple nodes
that map to a single policy. For this reason, this discussion will enforce a distinction between a
node in the automata representation and its associated control policy. Transitions represent switches
between policies governed by the continuous state evolution into the domain of a policy associated
with a child node; that is, the transitions are enabled with the state enters the domain of a policy
associated with a child node.

For transitions based on the extended prepares definition, the transition will be associated with
a non-deterministic outcome, and the finite automata may more properly be modeled as a Markov
Decision process. Here the transition is an action, with multiple outcomes. The action represents
a desired transition to a set of nodes associated with the set of policies in the extended prepares.
The transition is enables as soon as the system state enters the domain of any policy associated with
an outcome node. This thesis will use the term finite automata to encompass the non-deterministic
outcomes.

For simple navigation to an overall goal, we assume the existence of a single stabilizing policy,
which will be referred to as the “goal policy.” The node in the automaton that is associated with the
goal policy will be the termed the “goal node.” In some cases, where the system has a known initial

26 c© 2007 David C. Conner

ΦAΦB

ΦC

ΦD

ΦE ΦF

ΦG

ΦH

ΦI

ΦJ
ΦK

ΦL

ΦM

ΦN

ΦO

ΦPΦQ

ΦR

ΦS ΦT
ΦU

ΦV

ΦW

ΦX

ΦY

ΦZ

(a)

ΦAΦB

ΦC

ΦD

ΦE

ΦF

ΦG ΦH

ΦI

ΦJ ΦK ΦL ΦM ΦN

ΦO

ΦPΦQ

ΦR

ΦS

ΦT

ΦU

ΦV

ΦW

ΦX

ΦY ΦZ

1

1

11

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

3

3

3

3

3

(b)

Figure 3.7: Given the collection of iconic policiesΛ shown in (a), the discrete transition relationΓΛ

shown in (b) encodes the “prepares” relationship between policies. Thus the continuous behavior
of the system is abstracted as a discrete set of transitions between policy domains. Each transition
shows an associated heuristic cost that may be used in planning.

condition, references to the “initial policy” and “initial node” are made as appropriate, where the
initial state is contained in the domain of the initial policy.

c© 2007 David C. Conner 27

3.5.1 Sequence-based Planning

Themost basic type of planning in the space of policies is to define a sequence of policies that drive
the system to the goal. This is accomplished by determining a sequence of nodes, also called a
“walk” 1 , through graphΓΛ that connects the goal node with the initial node. In the toy example
shown in Figure 3.8,ΦC is designated as the goal policy, whileΦQ is the initial policy; that is,ΦQ’s
domain contains the initial state. The path induced by invoking policies along the ordered walk

1Many modern texts refer to this as a “path.” We chose to reserve the term “path” to refer to the sequence of configu-
rations of the system, and use the alternate term “walk” instead [121]

S1

G

(a)

ΦC

ΦE

ΦF

ΦQΦQ

ΦR

1

1

2
4

5

(b)

Figure3.8: Given a goal,G, corresponding to the goal set of policyΦC in Figure 3.7, and an initial
condition contained in the domain ofΦQ, the discrete planning system can specify a sequence of
policies to invoke by searching the prepares graph. Figure 3.8-a shows a path through the workspace
that may be induced by executing the policies according to the sequence shown in (b). The numbers
below each node denote the cumulative cost based on the edge costs in Figure 3.7.

28 c© 2007 David C. Conner

ΦQ → ΦR → ΦF → ΦE → ΦC flows from the initial state to the goal set ofΦC . The workspace
path is never explicitly defined, but is induced by the closed loop dynamics of the system. We
note that the choice ofΦE overΦD was made based on the heuristic costs; other criteria, such as
robustness, might lead toΦD being chosen.

Sequential planning has several advantages over conventional path planning. Instead of the
“thin” path through configuration space defined by many path planning methods, this graph walk
corresponds to a “thick” path that corresponds to the policy domains. Minor disturbances do not
require replanning provided the perturbation remains in the current policy’s domain. As the safe
domains are explicitly defined, the system can readily test to see if replanning is necessary.

Numerous graph planning tools, such as Dijkstra’s algorithm,A∗, andD∗ variants, are avail-
able for determining a valid walk [108]. The planning methods can determine an optimal graph walk
based on heuristic costs assigned to the edges connecting nodes. The induced path will not necessar-
ily be the optimal path as the heuristic costs assigned to the prepares graph represent some average
cost of activating a policy over its entire domain, and not a cost specific to the induced trajectory.
For large perturbations, or if additional information received during execution invalidates certain
policies, approaches such asD∗ allow for rapid replanning on the discrete graph [114, 81, 88]. As
replanning occurs on the discrete graph it has the potential to be much faster than for conventional
grid-based approaches.

In addition to basic graph walks, temporal specifications can be satisfied by adding discrete
states to an automaton that specifies the allowable transitions in the prepares graph [36, 37, 61]. The
search problem in the automaton becomes exponential in the number of temporal specifications,
therefore model checking approaches are commonly used. Most approaches considering temporal
specifications in use at this time do not consider heuristic costs, and only consider the discrete
transitions. The sequence must be re-planned if the temporal specification changes [36].

Sequence-based approaches have two fundamental drawbacks. First, the overall domain is
smaller than for the order-based approaches described next. As these sequences are open loop
walks, the walk must be re-planned if significant disturbances take the system out of the domains
of policies in the sequence; thus, the sequence-based hybrid system loses some robustness to dis-
turbance. While the policy domains represent a “thicker” path, the domain is still not “global”
because not all policies are used. Second, as the policies must be executed in sequence, the system
cannot take advantage of opportunistic jumps to higher priority policies. Thus, the sequences re-
strict the system to invoking the policies according to discrete transitions, which are at best a coarse
approximation of the closed loop behavior.

3.5.2 Order-based Planning

For navigation to a single goal, order-based approaches offer a “plan once, execute many times”
strategy. The decision regarding which specific policy is executed is deferred until run time; poli-
cies whose domains contain the current state are executed according the to predefined ordering.
Given any initial state in the domain of any policy within the ordering, the hybrid policy will bring
the system to the designated goal; that is, hybrid policy approximates the desired global policy.
Fundamentally, order-based approaches have a larger domain than a specific policy sequence that
solves a single navigation problem.

With order-based approaches the entire collection of policies is considered; therefore, the order-
based approach is more robust than the sequence-based approach where only some policies are used
in the deployment. In the face of a disturbance, as long as the system state remains in the domain of
at least one policy in the ordering, the execution continues.

c© 2007 David C. Conner 29

In this subsection three types of orderings are considered: totally orderedlists, finite automata,
and partial orders. We begin with the more concrete examples of ordered lists and finite automata,
and then describe the more abstract partial order.

By considering heuristic costs assigned to the prepares graph, a discrete planner can order of
all the policies in the suite based on the cumulative cost to goal. In general, the conversion from a
generally cyclic transition relation encoded by the prepares graph, to an acyclic transition relation
with a single goal is not unique. While the choice between some transitions may remain arbitrary,
the cost-based ordering provides a systematic approach defining a policy switching strategy.

Dijkstra’s algorithm,A∗, D∗, and other variants may be used to convert the cyclic prepares
graph into an acyclic directed transition relation with cumulative costs assigned to each node. Each
node in this tree-like structure maps to a node in the prepares graph, and hence to a particular policy.
Each transition maps to one edge in the prepares graph, such that the transition points to a node,
or nodes in case of extended prepares, with the minimum cost to goal. The transitions between
associated nodes must have an associated edge in the prepares graph. In symbolic planning terms,
the transitions in this tree-like structure encode a “policy” for each node in the prepares graph; that
is, at a given node with associated policy, the transition points to a node associated with a prepared
policy that represents the best choice to minimize cost. This thesis reserves the term policy to mean
“continuous feedback control policy”, and will use the term “action” to denote the desired transition.

D∗ and its variants allow for rapid reordering of the tree-like structure as new information is
obtained that changes the cost structure of the graph. For example, if a policy becomes invalid
based on a newly discovered obstacle, D* allows the relevant nodes of the ordering to be rearranged
without required a complete re-plan.

Figure 3.9 shows the tree-like representation with cumulative node costs assigned; the acyclic
transition relationΓ′

Λ is constructed from the prepares graph from Figure 3.7.ΦC is the goal node.
Note that in constructing the transition relation in Figure 3.9,ΦV is at lower priority than either
ΦX or ΦW . This is required because of the external choice imposed upon the extended prepares
relationship. Also, note that the designated goal cannot be reached fromΦY andΦZ ; therefore,
these policies are removed fromΓ′

Λ and the domains of these policies are not included in the over
all hybrid policy domain.

Given the assigned costs to each node in the tree-like structure, the ordering can be executed as
a finite automata model that corresponds to the tree-like structure, or as a totally ordered list based
on the assigned costs. We begin with the discussion of the list-based total order.

One execution strategy is to convert the tree-like structure to an ordered list of policies based on
the cumulative costs assigned to each node. While there may be some arbitrary choice involved if
nodes have the same cumulative costs, the list results in a total order of the policies. If the domain
inclusion tests are relatively fast, and the number of policies relatively small, then it is possible to
search an ordered list of policies from highest to lowest priority at each controller time step2, and
execute the first policy whose domain contains the current state.

Consider the following examples shown in Figure 3.10. StateS1 is contained in the domains
of both ΦQ andΦT ; ΦQ is executed based on the total ordering induced by the costs shown in
Figure 3.9.ΦE is assigned higher priority thanΦD

3. During execution, a disturbance causes the
trajectory to exit the domain ofΦE as shown in Figure 3.10. AsΦD is also a valid policy, a search
over the total order choosesΦD and continues execution on its way to the overall goal. Thus, the
system can automatically react to disturbances using the total order. As long as the disturbances

2Thepolicies are designed as continuous policies, but execution of the hybrid controller on a computer introduces a
discrete time step.

3Graphs are often drawn with the root node at the top, therefore, lower priority policies are on lower layers. Here, the
graphs are drawn horizontally with the root on the left to save space. We will retain the higher/lower terminology.

30 c© 2007 David C. Conner

G

Lost

ΦA ΦBΦC

ΦD

ΦE ΦF

ΦG

ΦH ΦI

ΦJ

ΦK ΦL ΦM ΦN

ΦO
ΦPΦQΦR

ΦS ΦT ΦU ΦV ΦW

ΦX

ΦY

ΦZ

1 2

2

4 5

5

6

7

7

8

8

10

10

12

13

1415

15

17

18

182123

∞

∞

Figure 3.9: The prepares graphΓΛ is converted from a cyclic graph to an acyclic tree-like structure
Γ′

Λ. This structure is not a true tree due to the non-deterministic transitions encoded by the extended
prepares relation. The cumulative path cost is shown at each node.

are infrequent relative to the overall convergence rate, this method has been proven robust [21].
The statesS2 andS3 demonstrate the non-determinism inherent in the extended prepares definition;
the induced trajectories from both states pass throughΦV , but take different routes through the
graph and workspace because of different policies that are invoked as the induced trajectories enter
different domains.

The benefit of the list-based total order approach is that it allows opportunistic switching; if a
disturbance or induced trajectory takes the system state into the domain of a higher priority policy,
then that policy can be executed immediately, without waiting for transitions through intermediate
child nodes. For example, consider the paths starting atS4 in Figure 3.10. The policiesΦG and
ΦH overlap and are both prepared byΦI . In Figure 3.9,ΦI is assigned to transition toΦH based
on the higher cost of the edge fromΦI to ΦG. The path labeled ‘a’ illustrates the path induced
by following the this policy switching strategy. On the other hand, a list-based execution strategy
allows the opportunistic switch to nodeΦG as soon as the state enters the domain ofΦG; this switch
is based on the lower cumulative node cost atΦG. Path ‘b’ represents the path taken by using
opportunistic switching. In the case of opportunistic switching,Γ′

Λ does not represent a guaranteed
transition relation. The list-based method cannot guarantee that a node will not be skipped, only
that the system will inevitably transition to some higher priority policy.

c© 2007 David C. Conner 31

S1
S2 S3

S4
G

Disturbance

a
b

Figure3.10: Given the ordering from Figure 3.9, this figure shows the execution for several different
initial conditions, labeledSi. The thick lines represent the integral curves induced by the local
policies. The lines labeled ‘a’ and ‘b’ represent two different flows induced by different policy
switching strategies. The line fromS4 suffers a disturbance, that is captured by another policy
domain. The flow lines terminate at the overall goal setG.

The ordering encoded in the tree-like transition relation can also be executed as a finite automa-
ton. In this mode, the software governing policy execution monitors the current node, which is
stored as an additional internal state variable. The inclusion tests only need to check the children
and current policy during runtime. The transitions to a new policy domain may occur as soon as the
state enters the domain of a policy associated with a child node.

The chief benefit of the finite automaton-based execution strategy is faster execution time, be-
cause fewer inclusion tests are required. This is because the testing of policy domains is limited to
the current node and its children in the finite automaton. The approach is advised if the inclusion
tests are relatively slow, or the number of policies relatively high. If a disturbance takes the state
outside the domain of both the current policy and its children, then the system should revert to a
search over the entire tree to preserve robustness. In this case, depending on required search time,
it may be prudent to pause the vehicle motion while conducting the total order search.

The finite automata approach does not allow opportunistic switching as readily as the list-based
total order. Trajectory ‘a’ flowing from stateS4 represents the trajectory induced by following the
actions specified by the finite automaton execution strategy. A limited form opportunistic switching
can be allowed by checking nodes associated with policies that are prepared by the current policy,
but do not represent the “best” action. The opportunistic switch can be enabled for any “prepared
node” that has a lower cumulative cost assigned.

Another possible approach to allow opportunistic switching is run an “anytime” search algo-
rithm in parallel with the automaton-based execution strategy; the anytime algorithm can seek
opportunistic switches in the spare computing cycles between control updates [80]. The anytime
algorithm should restart the search process when its cumulative cost equals that of the current node.

32 c© 2007 David C. Conner

This approach combines the benefits of the finite automata-based execution strategy with the benefit
of opportunistic switching.

One potential downside to opportunistic switching is due to the lumped approximation of the
discrete transitions. While the node cost may be lower, the state may enter the policy domain in a
region that requires higher than average costs; therefore, it may be prudent to evaluate a transition
cost based on current state before allowing opportunistic switching. The control designer may also
wish to guarantee transitions in a predictable manner. The choice of whether to allow this limited
opportunistic switching could be made on a node-by-node basis.

The final order-based approach is apartial order. In theory, all that is needed for an order-based
approach is a function that prioritizes the set of policies whose domain contains a given state and
are valid for a given navigation task. This function is called apartial order. Consider stateS1 in
Figure 3.10 again; stateS1 is contained in the domains of bothΦQ andΦT . A partial order will
chose one over the other. Using a partial order in place of a total order requires knowledge that the
overall goal is reachable via a given policy, otherwise the policy is invalid for the task. Thus, while
the partial order itself requires only knowledge of the collection of policy domains containing the
current state, evaluating that the goal is reachable from a particular node requires global knowledge
of the prepares graph.

One drawback to the order-based approaches are that they are limited to addressing a single
navigation task. That is, order-based approaches are best suited for navigation to a specific goal,
governed by a specific policy. Order-based approaches by themselves are ill suited for tasks that
require visiting multiple points, or whose ultimate goal depends on information gathered a run
time. A higher-level executive can re-order the policies to induce changes in navigation behavior,
or switch between multiple orderings if needed. Another alternative is exploit the finite automata
more fully, to generate hybrid policies that satisfy the high level specifications automatically.

3.5.3 Automata-based Planning

In order to plan for higher-level task specification, including those with the need to respond to events
or respect temporal restrictions, a more flexible planning approach is needed. Sequence-based ap-
proaches require replanning if the system needs to react to an event, and order-based approaches
by themselves are only suitable for single tasks. To address this issue, recent work has focused on
automatically synthesizing automata from a prepares graph [61, 68].

Combining policy composition with automata synthesis leverages the strengths of control the-
oretic and computer science approaches. Control theoretic approaches offer provable guarantees
over local domains; unfortunately, the control design requires a low-level specification of the task.
In contrast, discrete planning advances from computer science offer the ability to specify more gen-
eral behaviors, which may react to environmental changes, and generate verifiable solutions at the
discrete level; discrete planning lacks the continuous guarantees and robustness offered by feedback.
Synthesizing an automaton that governs the execution of the local feedback policies provides the
benefits of both feedback and discrete planning, while mitigating the drawbacks. These automata
synthesis tools specify behaviors in terms of linear temporal logic (LTL) operations on the prepares
graph nodes. LTL combines the standard Boolean logic operators, such as ‘AND’,‘OR’, and ‘NOT’,
with temporal operators such as ’ALWAYS’ and ’NEXT’ [34].

Kress-Gazitet al. [68] have developed an automaton synthesis tool that use specifications en-
coded in a subset of the full LTL that describe behaviors on the prepares graph generated by the
work in this thesis. The approach allows both discrete inputs and discrete outputs to be specified.
The discrete inputs are sensed by the robot, and the discrete outputs trigger actions, such as sound an
alarm. This allows the system to change high-level behavior-based on discrete events, which allows

c© 2007 David C. Conner 33

the system to react to environmental changes in a guaranteed manner. Givena specification and
prepares graph, the synthesis process either extracts an automaton that satisfies the specification,
or shows that the specification is not realizable on the prepares graph. Transitions in the automa-
ton are governed by the transitions between policy domains and the discrete events sensed by the
robot [24]. Thus, the combination of automata and continuous feedback control policies allows
high-level specifications to be satisfied by executing the continuous feedback control policies. The
work in this thesis has enabled these approaches to be applied to more complex systems.

Returning to the example of Figure 3.7, we wish to specify that the robot patrol the lower left
obstacle until an event is seen, and then goes to a particular station. The first part, “patrol the lower
left obstacle by visiting areas ‘F’ and ‘A’, until an event ‘EV’ at ‘A’ is seen.” After seeing the event,
“go to ’O’, sound an and stay put.” Figure 3.11 shows an example of an automaton whose execution
satisfies this behavior.

S

Event ‘EV’

G

(a)

ΦAΦB

ΦC

ΦE

ΦF

ΦG

ΦI

ΦJ ΦK ΦL ΦM ΦN

ΦO

IC¬EV

EV

(b)

Figure 3.11: Automata-based planning allows for the system to react to local conditions while
satisfying a given specification. Figure (a) shows portions of the path taken while satisfying the
automaton shown in (b).

34 c© 2007 David C. Conner

There are several down sides to the current automata synthesis approaches.First, these current
approaches do not consider transition costs. Thus, a heuristic cost associated with invoking a more
complex policy is not taken into consideration by the current synthesis tools. Second, because the
automaton does not use all of the policies in the collection, some robustness to disturbance is lost. In
Chapter 6, we present one approach to combining the automata synthesis with order-based planning
to improve the robustness of the automaton.

3.6 Summary

This chapter has introduced two extensions to the basic sequential composition technique. First,
flow-through policies are introduced, which allow the system to encode natural behaviors for non-
holonomic systems. Second, the prepares definition is extended to allow a policy to prepare a set of
policies. This extension provides more flexibility in instantiating the local policies, but complicates
the discrete planning. The impact of this change on the planning is discussed.

The chapter discusses the properties that are necessary for composable policies. In addition to
policies that that respect the system constraints, the policy domains must be completely contained
in the free state space and conditionally invariant. The vector field flow induced by the closed-loop
policy must converge to a well defined goal set in finite time. Additionally, the policies should have
simple and efficient inclusion tests to allow the approach to be executed in real time. Any policy
with these properties can be deployed in our hybrid control framework.

The chapter discusses approaches to planning in the space of instantiated policies. Three basic
approaches are presented: sequence-based, order-based, and automata-based. A “toy” example
highlights the differences between the approaches. Section 3.5 discusses the relative strengths and
weaknesses of each approach. In general, order-based and automata-based approaches are preferred
over the sequence-based approaches for reasons of robustness and flexibility.

3.7 Glossary

As a convenience, this section reiterates several definitions given in the text of earlier chapters.

Definition: Policy: A policy is a mapping from state to the bounded input space; that is,Φ : X →
U . In this thesis, the termpolicy is shorthand forcontinuous feedback control policy

Definition: Domain: The domain of a policy, denotedD(Φ), is the region over which the state to
input mapping is valid.D(Φ) ⊂ X .

Definition: Flow: The flow of the system under the influence of a given policy, denotedXt, is
the family of integral curves induced by the closed loop dynamics of the system whereX =
f ◦ Φ. Assigning a specific initial condition identifies a specific integral curve, or flow line.
Specifying an initial state and elapsed timet identifies a specific point in the state space. That
is, starting fromx (0) and flowing along the integral curve passing throughx (0) for t seconds
brings the system tox (t) = Xt (x0).

Definition: Goal Set: The goal set of a policy, denotedG (Φ), is a subset of the domain, that is
G (Φ) ⊂ D(Φ), whereby invoking the policy over the domain will induce motion that flows
to the goal set. Thus,

∀ x0 ∈ D(Φ) ∃t s.t. Xt (x0) ∈ G (CP) .

c© 2007 David C. Conner 35

Definition: Generic Policy: A genericpolicy is a policy defined by free parameters. The parameter
values determine the size, shape, and location of the policy domain, as well as the state-to-
input mapping of the policy.

Definition: Palette: A paletteis a collection of available generic policies.

Definition: Instantiated Policy: An instantiated policyis a policy with assigned parameter values.
That is, it is a generic policy whose free parameter values have been assigned; therefore, the
policy domain and mapping is determined.

Definition: Suite: A suiteis a collection of instantiated policies available for planning.

Definition: Prepares Graph: Theprepares graphencodes the prepares relationships between poli-
cies in the suite.

Definition: Deployment: A deploymentis a suite of policies and a defined switching strategy for
executing the policies. Given a suite of policies and the prepares graph, the planning system
generates a deployment.

36 c© 2007 David C. Conner

37

Chapter 4

Application of Policy Composition to Fully Actuated
Systems

This chapter demonstrates the approach to policy composition and planning on fully actuated dy-
namical systems. Since the system is an idealized point with fully actuated dynamics, it has no
orientation and is free of nonholonomic constraints. For these idealized systems, the configuration
and workspaces are equivalent, and the equations of motion are given by eitherq̇ = u or q̈ = u,
whereq, u ∈ IRn. We define a class of flow-through policies for these relative simple systems to
demonstrates the principles behind the hybrid control approach outlined in Chapter 3.

The chapter begins with a discussion of a particular policy design approach that satisfies the
requirements from Chapter 3; proofs are given in Appendix B. Designs for both kinematic and
second order systems are presented. Throughout the chapter, examples are given to illustrate be-
havior of each policy. The chapter presents several examples to demonstrate the variety of planning
techniques discussed in Chapter 3. This last section concludes with an approach to automating the
deployment of policies for second order systems.

4.1 Local Control Policy Design for Fully Actuated Systems

As the basic navigation task is defined in the workspace, our approach defines cells within the
workspace; by design, composable feedback control policies are relatively easy to define over each
cell. For simplicity, the examples in this thesis are restricted to cells that are convex polygons in an
IR2 workspace. While this presentation focuses on convex polygons, the ideas are directly appli-
cable to convex polytopes inIRn. In most of the policy designs, the extension to arbitrary convex
regions is obvious. Although beyond the scope of this thesis, many of the techniques can naturally
be extended to regions that are homeomorphic to balls inIRn. The approach assumes that a finite
convex decomposition of the free configuration space is given. In practice, such a decomposition
may be specified by a map or floor plan, or calculated automatically for low dimensional spaces [58].

The local policies defined over each cell are based on local potential functions, which are used
to define one of two configuration-based velocity reference vector fields over each cell. We then
design a control law for each system model that causes convergence to the reference vector fields.
For the first type of vector field, the integral curves emanating from all interior points cross the
cell boundary within a specified region; this type is termed aflow-throughvector field. Integral
curves of the second type converge to a designated goal point in the interior of the cell; this type
is termed aconvergentvector field. The remainder of this section provides details for this policy
design approach for both kinematic and second order systems.

4.1.1 Vector Field Design

Thevector fields used in the policy design approach are based on gradients of a potential function.
The flow-through and convergent vector fields use two different types of potential functions. In
both cases, it is generally easier to calculate a valid potential function over a unitn-ball than over a
general convex polytope. For this reason, we define a mapping from the cell to then-ball, and use
this to “pull back” a potential function from the ball to the polytope, and calculate the gradient of the
pulled back potential. Letϕ : P → B define a mapping from an arbitrary cell,P, to a unitn-ball,
B, centered at the origin. The mapping maps interiors to interiors, and boundaries to boundaries.
For a convex polytope, Appendix B defines the mapping based on a scaled radial retraction as

ϕ (q) =
q

‖q‖ + β (q)
,

whereq ∈ P, andβ (q) : P → IR is a scaling factor based on the distance to the cell facets.
Givenγb, a potential function defined over then-ball, the potential function in the arbitrary cell

is given as
γ = γb ◦ ϕ . (4.1)

By the chain rule, the potential gradientDqγ = Dϕ(q)γb · Dqϕ for qb = ϕ (q), which lies on the
interior of then-ball by construction. The gradient,Dqγ, will be well defined if the Jacobian of
the mapping,ϕ, is full rank over the interior of the cell; Appendix B proves that our mapping for
convex polytopes is full rank on the interior.

We now discuss the particulars of the two vector field designs using the potential function map-
ping approach.

Flow-through Vector Field Design

The flow along a flow-through vector field exits a given configuration space cell through a desig-
nated boundary region termed theoutlet zone. The remaining boundary is termed theinlet zone.

Figure 4.1: Vector field for a flow-through policy.

38 c© 2007David C. Conner

Figure 4.1 shows a typical flow-through vector field for a convex polytope,where one facet is de-
fined as the outlet zone and the remaining facets are designated inlet zones.

To generate a flow-through vector field over the cell as the negative gradient of a potential
function, the potential functionγ must be free of local minima on the cell interior. A harmonic
function, which is a solution to Laplace’s equation, provides a natural way to define a potential
without spurious local minima. The design approach defines a constant minimum potential along
the outlet zone; a constant maximum potential is defined along the inlet zone. While a solution over
an arbitrary convex polytope is not available, the solution to Laplace’s equation over then-ball is a
computable integral equation.

On the unit disk with piecewise continuous boundary conditions the solution exists in closed
form [35, 106]. Letqd = ϕ (q) = (xd, yd) be the Cartesian coordinates of a point in disk mapped
from a point in the polygon. For the disk, the most natural representation is in polar coordinates, so
define

ρ =
√

x2
d + y2

d ,

θ = atan2 (yd, xd) .

If the boundary condition is 0 along the outlet zone, and 1 along the inlet zone, and the outlet zone
crosses the negativex-axis, the solution to Laplace’s equation on the unit disk inIR2 is

γb (ρ, θ) =
α1 − α0

2π
+

1

π
tan−1

(

ρ sin (α1 − θ)

1 − ρ cos (α1 − θ)

)

− 1

π
tan−1

(

ρ sin (α0 − θ)

1 − ρ cos (α0 − θ)

)

, (4.2)

whereαi denotethe angle coordinates of the vertices of the outlet face. See Appendix B for details.
Figure 4.2 shows an example of the mapping and potential used to generate the vector field in

Figure 4.1. Although the potential field,γ, over the cell resulting fromγ = γb ◦ ϕ no longer obeys
Laplace’s equation,γ is free of spurious minima as proven by

b b

1

0

2

3

4
5

0

2
3

4

5

1

Figure 4.2: Mapping from polygon to unit disk. The contour plot on the left shows level sets of the
pullbackγb ◦ ϕ on the polygon; the contour plot on the right shows the corresponding level sets of
γb on the unit disk.

c© 2007 David C. Conner 39

Lemma 4.1.1 Thepotential functionγ defined by (4.1) is free of local minima over the interior of
P providedγb is a harmonic function, with a constant minimum potential along the outlet zone and
a constant maximum potential along the inlet zone, and the Jacobian of the mappingϕ is full rank.

Proof: By construction,γb is a harmonic function with extrema on the boundaries of the unitn-
ball; therefore, the gradientDqbγb for qb = ϕ (q) is non-zero on the interior of then-ball since
there are no interior critical points [35].

The Jacobian of the mappingϕ is assumed to be full rank, meaning thatDqϕ is a full rank
matrix for all q ∈ P ; therefore,Dqγ = Dϕ(q)γb ·Dqϕ 6= 0 for non-zeroDqbγb.

SinceDqγ 6= 0 for all q ∈ P , we conclude that there are no critical points on the interior of
P [66]; therefore, we conclude that a local minimum does not exist on the interior.

2

Flowing along the gradient vector field provides the correct behavior, but induces some unde-
sirable variability in speed. The gradient vector field has large magnitudes in some portions of the
cell and small gradients in others. Therefore, define the unit reference vector field,X̂(q), for q ∈ P
by taking the negative normalized gradient of the potential; thus,

X̂(q) = − Dqγ
T

‖Dqγ‖
= −

Dqϕ
T Dϕ(q)γ

T
b

∥

∥Dϕ(q)γbDqϕ
∥

∥

, (4.3)

whereqb = ϕ(q) ∈ B. The flow along the unit vector field captures the desired behavior, without
being bound to the speed specified by the norm of the potential function gradient. The vector field
X̂(q) is orthogonal to the cell boundaries because the potential extrema are along the boundaries of
the cell by virtue of the mappingϕ that maps boundary to boundary.

It is worth noting that Lindemann and LaValle [82, 83, 84] adapted this approach by using a
different vector field generation approach over convex polytopes. Their vector fields have similar
properties; the vector field derivatives are smooth almost everywhere and can be defined orthogonal
to the cell boundaries. As such, their vector field design approach can be used with the control laws
defined below.

Convergent Vector Field Design

The flow-through style policies are useful for driving the system from cell to cell, but not for con-
verging to an overall goal. The policies developed by Rizzi [105] are appropriate for converging
to a goal, but do not have vector fields that are orthogonal to the cell boundaries. To simplify the
prepares test between policies defined over adjacent cells, and to provide some control continuity
across cell boundaries, we consider a modification that generates a vector field that is orthogonal to
the cell boundaries.

First, map the goal cell to the unit ball,B, using the mapϕ as before, and let

qbg = ϕ(qg) ,

whereqg is the goal configuration, andqbg is the mapped goal point. Letψ : B\qbg → B\0 define a
diffeomorphism such thatψ(∂B) = ∂B andlimq→qg ψ(ϕ (q)) = 0.

For the unit disk, a mapping based on complex numbers serves the purpose. Letz = qb = ϕ(q)
be an arbitrary point in the unit disk represented in complex plane. Letzg = qbg = ϕ(qg) be the goal

40 c© 2007 David C. Conner

g

y

.
qg

.

(q)g

.

y()(q)g

Figure4.3: Equipotential contours for a convergent potential function found by mapping the goal
cell to a unit ball centered at the goal, and lettingγg = 1

2 ‖ψ ◦ ϕ‖2.

point in the complex plane. Then

zψ = ψ(z) =
z − zg

1 − z̄g · z
, (4.4)

wherez̄g is the complex conjugate ofzg. Clearly,zψ = 0 if z = zg. Simple algebraic calculations
show that the boundary maps to the boundary. Figure 4.3 shows an example of this mapping for a
polygonal cell in the plane.

Define the potential functionγg : P → IR such that

γg =
1

2
‖ψ ◦ ϕ‖2 ,

where0 ≤ γg ≤ 1. For the goal policy, define the convergent reference vector field,X̂(q), as

X̂(q) = −
Dqγ

T
g

‖Dqγg‖
‖q − qg‖2

‖q − qg‖2 + α
, (4.5)

whereα > 0 is a scalar parameter that regulates the rate of deceleration near the goal. The vector
field is orthogonal to the boundary and has decreasing magnitude near the goal point.

4.1.2 Control Law Design

Given either flow-through or convergent reference vector fields,X̂(q), this section derives a family
of control laws that cause the system to converge to the vector field integral curves in such a way that
the properties outlined in Chapter 3 are satisfied. The section defines control laws for kinematic and
second-order dynamical systems. The second-order systems consider both unbounded and bounded
acceleration.

Kinematic Control Law

For an idealized kinematic system of the formq̇ = u, the control inputs follow directly from the
reference vector fields with

u = X(q) = s(q) X̂(q) , (4.6)

c© 2007 David C. Conner 41

wheres(q) ∈ (0,Vmax] ⊂ IR andX̂(q) is defined in (4.3) or (4.5). The scaling functions(q) is
used to respect speed limits imposed upon the system. For ideal kinematic systems, a constant speed
scaling can be defined.

The control law (4.6) with vector fields (4.3) or (4.5) define a generic class of composable
policies defined over convex cells. As the system is an idealized point robot, the requirement that
the domain lie within the free configuration space is trivially satisfied since the cells are assumed to
be fully contained in the free configuration space.

The control in (4.6) induces the system trajectory to follow the integral curves ofX̂(q) by
definition; thus, by construction, the kinematic control policy is conditionally positive invariant for
both flow-through and convergent vector fields.

The policy induces finite time convergence provideds(q) is bounded above zero over the entire
cell; that is,s(q) > ǫ > 0, for some finiteǫ. The flow-through vector field will cause the system
to exit the cell in finite time because the velocity component along the vector field is always strictly
positive , and every flow line exits the cell because there are no local minima. Thus, the system
always makes finite progress along the flow line toward the exit face. For convergent vector fields,
the system will converge to some arbitrarily small neighborhood of the goal in finite time.

The configuration-based test for inclusion into the kinematic domain is easily calculated for
polytopes defined by half-space constraints. Thus, these policies satisfy all of the composability
requirements given in Chapter 3.

Dynamical Control Law: Unbounded Acceleration

Given an idealized second-order dynamical system of the form

q̈ = u , (4.7)

subject to the velocity constraint‖q̇‖ ≤ Vmax, define a reference vector fieldX(q) = s(q) X̂(q),
for some positive scalar functions(q) ∈ (0,Vmax] ⊂ IR. In addition to enforcing the velocity limit,
s(q) is used to enforce the prepares relationship among neighboring policies.

Following Rizzi [105], define a velocity reference control policy of the form

u = K (X(q) − q̇) +DqX q̇ , (4.8)

whereK > 0 is the “velocity regulation” gain that acts to decrease the error(X(q) − q̇), andDqX q̇
is a feed-forward term that enables the system to follow the changing vector field.

Lemma 4.1.2 In the absence of acceleration constraints, with sufficiently largeK and initial veloc-
ities such that‖q̇‖ ≤ ‖X(q)‖, andq̇TX > 0 or ‖q̇‖ = 0, the trajectories of the closed-loop system
defined by (4.7) under the influence of (4.8), converge to the integral curves of the vector fieldX(q)
in a way such that the trajectory never exits the cell except by the outlet zone. Furthermore, the
system speed remains less than the reference speed while the system remains in the policy domain;
that is‖q̇‖ ≤ ‖X‖. For flow-through vector fields, the system trajectory exits the cell in finite time.

See Lemma B.2.4 in Appendix B for a detailed proof. Appendix B also includes details on calcu-
lating a lower bound forK.

For unbounded dynamical systems, control law (4.8) with vector fields (4.3) or (4.5) define
a generic class of policies defined over convex cells. The domain test requires three calculations,
a configuration test for inclusion in the polytope and two velocity tests for‖q̇‖ ≤ ‖X(q)‖ and
q̇TX > 0. Lemma 4.1.2 proves conditional invariance and finite time convergence.

42 c© 2007 David C. Conner

For policies defined over disjoint cells with unbounded acceleration, the preparestests are sat-
isfied if the speed profiles at the exit zone of one cell is less than the speed profile along the inlet
zone of the next cell. Given that the reference vector fields are orthogonal at the boundaries, the
requirement thaṫqTX > 0 is satisfied by any velocity that crosses the shared boundary. Therefore,
as long as the reference speed of the “upstream” policy is less than or equal to the reference speed
of the “downstream” policy, the prepares test is satisfied. In the unbounded acceleration case,s(q)
can be a constant less thanVmax for all policies over a disjoint decomposition; this, the policies
satisfy the velocity bound.

Figure 4.4 shows a simulation of a variety of initial conditions for the dynamical system given
in (4.7) under the influence of (4.8). The policy deployment is defined and ordered by hand to en-
sure prepares based on the adjacency relations among cells. For each initial condition, the system
converges to the goal configuration using the hybrid control strategy induced by the underlying de-
composition into disjoint polygonal cells. The simulation, where the policies are executed based
on the total ordering, demonstrates the global control policy that is induced by our policies and de-
ployment method. The resulting trajectories induced by the feedback control policies are dependent
upon the underlying decomposition; that is, the shape of the integral curves are determined by the
shape of the polygon and the selected outlet zone. Different decompositions yield different trajecto-
ries; however, the overall convergence to the goal is guaranteed provided the prepares relationships
are obeyed.

Dynamical Control Law: Bounded Acceleration

As a more realistic system, consider (4.7) with the following dynamic constraints,

‖q̇‖ ≤ Vmax , (4.9)

‖u‖ = ‖q̈‖ ≤ Amax . (4.10)

The velocity limit is taken to be a safety limit as before. In the presence of the acceleration con-
straint, the control law in (4.8) is insufficient. In regions where the vector field is changing, just
tracking the vector field witḣq = X(q) will violate the constraints if‖u‖ = ‖DqX q̇‖ > Amax.

Figure 4.4: Simulation of a dynamical system using the velocity reference controlpolicies based
on flow-through and convergent vector fields. Light colored lines represent integral curves of the
X(q), while the dark colored lines represent trajectories of the system for various initial conditions.

c© 2007 David C. Conner 43

Figure 4.5: Spectral norm of the derivative of the negative normalized gradientvector field

(
⌈⌉

DqX̂
⌈⌉

) for a polygonal cell, with the cell boundary shown. The largest norms, which remain

finite due to approximation, are located near the polygon vertices.

To avoid violating the constraints, scale the reference vector field to encode the idea of slowing
down while turning and define the variable speed vector fieldX(q) = s(q) X̂(q), where

s(q) = min

s∗
⌈⌉

DqX̂
⌈⌉

+ λ
,Vmax

 . (4.11)

with s∗ a constant defined for each policy as described below, andλ > 0 an arbitrary constant

that prevents divide by zero. The term
⌈⌉

DqX̂
⌈⌉

is the spectral norm1 of DqX̂, which increases in

relation to the change in the vector field, thereby decreasing the speed. Figure 4.5 shows a plot of
⌈⌉

DqX̂
⌈⌉

for the example polygonal cell shown in Figure 4.1. The constants∗ is chosen so that

s∗ ≤ min
q

√
Amax

(⌈⌉

DqX̂
⌈⌉

+ λ
)

√

⌈⌉

DqX̂ − X̂ Dq⌈⌉DqX̂⌈⌉
⌈⌉DqX̂⌈⌉+λ

⌈⌉

, (4.12)

which provides a conservative bound that guarantees the system will not exceed the acceleration
bound so long as the speed atq does not exceed s∗

⌈⌉DqX̂⌈⌉+λ .

Although this form allows the reference velocity control policy to make use of the dynamical
capabilities of the system, the form is still not sufficient to prevent constraint violations whenq̇ 6=
X(q). In the case when the initial velocity is not aligned with the vector field, the proportional term
of (4.8) may cause the acceleration constraint to be violated.

1Thespectral norm of a matrixM , denoted⌈⌉M⌈⌉, is defined as

⌈⌉M⌈⌉ = max
‖x‖=1

‖M x‖ .

44 c© 2007 David C. Conner

To prevent this, we define a switched (hybrid) control policy over each cell;the component poli-
cies are called ‘Save’, ‘Align’, and ‘Track’, denotedΦS , ΦA, andΦT respectively. The component
policies are designed to cause the system to converge to the integral curves ofX(q) without violat-
ing the constraints or exceeding the specified speed. This section gives an overview of each policy;
refer to Appendix B for implementation details .

The Save policy for polytope cells,ΦS , is based on the policy presented in [105]. The policy
is designed to use the maximum available acceleration applied orthogonal to the boundary point of
first collision based on the open loop dynamics. This is guaranteed to bring the system to rest within
the cell if there exists any policy capable of doing so [105]. The domain ofΦS is termed thesavable
set, and corresponds to any initial condition in the state space associated with a given cell that can be
brought under control and avoid collision. Appendix B defines thecollision avoidance ratio,ζc > 0
as the ratio of the braking distance to the collision distance. The braking distance is the distance the
system would move toward the point of imminent collision while maximally braking; the collision
distance is the distance to the closest collision point. Ifζc < 1, collision can be avoided and the
system brought safely to rest; therefore, the savable set for a given polytope,P is

D(ΦSP
) := {(q , q̇) | q ∈ P, ζc < 1} .

The goal set of this policy,G (ΦSP
), is some configuration within the cellP, where the system is at

rest; that is,G (ΦSP
) = {(q, q̇) | q ∈ P , ‖q̇‖ = 0}.

Lemma 4.1.3 For a given convex polytope and initial velocity such that0 ≤ ζc < 1, the Save
policy acts to decreaseζc. Therefore,ζc remains less than one, collision is avoided, and the system
remains in the savable setD(ΦSP

) := {(q , q̇) | q ∈ P, ζc < 1} and eventually comes to rest.

See Lemma B.3.2 in Appendix B for proof.
The Align policy, ΦA, is designed to apply maximum acceleration to the system in order to

quickly bring the velocity vector into alignment with the vector fieldX(q) defined by either (4.3)
or (4.5).ΦA transitions from performing a Save control action, that is applying maximum acceler-
ation orthogonal to the point of boundary collision, to using a portion of the available acceleration
to reduce the angle between the reference velocity and current velocity, while also decreasing the
current speed. A user defined constant,0 < µ < 1, determines the transition between the “saving”
and “aligning” actions. Define

υ = max

(

0,
µ− ζc
µ

)

,

andlet σ : υ → [0, 1] define the transition function such thatσ (0) = 0 andσ (1) = 1. The Align
policy is given by

ΦA : u =

Amax
(1−σ(υ))ΦS+σ(υ) ê

‖(1−σ(υ))ΦS+σ(υ) ê‖ q̇TX ≤ q̇T q̇

Amax
(1−σ(υ))ΦS−σ(υ) ˙̂q

‖(1−σ(υ))ΦS−σ(υ) ˙̂q‖ otherwise
, (4.13)

whereê = X(q)−q̇
‖X(q)−q̇‖ is theunit vector along the velocity error,˙̂q = q̇

‖q̇‖ is theunit direction of current
speed, andΦS denotes the input defined by the save policy. The demonstrations in this chapter use
σ (υ) =

√
υ.

The Align policy is hybrid (switched) policy. Atσ (υ) = 0, that is whenζc ≥ µ, the Align
policy is “saving” withu = ΦS . Whenσ (υ) > 0 the policy transitions to aligning, but switches
behavior based on the system velocity. In the normal mode,ΦA uses a transition function to combine
the Save action with acceleration along the velocity error vectorê. If the acceleration alonĝe would

c© 2007 David C. Conner 45

increase the velocity, as whenq̇TX > q̇T q̇, thenΦA switches to apply maximum acceleration along
the negative of the current velocity. The Align policy always acts to decelerate the system.

The domain of the Align policy over a given cell is

D(ΦAP
) := {(q , q̇) | q ∈ P, ζc < 1} ,

which is equivalent to the domain of the Save policy over the same cell. The goal set is

G (ΦAP
) = {(q, q̇) | q ∈ P , ‖q̇‖ = 0} ,

which is also the same as for the Save policy. Since Align is equivalent to Save forζ ≥ µ, the
domain is conditionally invariant by Lemma 4.1.3.

The Track control policy,ΦT , is designed to bring the system velocity into alignment with the
vector fieldX(q) using the maximum available acceleration and then track the vector field according
to (4.8). The domain of the Track control policy over a given cell,P, is

D(ΦTP) =
{

(q , q̇) | q ∈ P , q̇TX > 0 , ‖q̇‖ ≤ ‖X(q)‖
}

.

That is, the speed is less than or equal to the reference speed, and the orientation error between the
current velocity and the desired velocity is less thanπ

2 . For flow-through vector fields as in (4.3), the
Track control policy guarantees that the system trajectory does not exit the cell, other than by the
outlet zone, which is the goal set,G (ΦTP) =

{

(q , q̇) | ‖q̇‖ ≤ ‖X(q)‖ , q̇TX > 0 , q ∈ ∂Poutlet

}

.
For convergent vector fields,G (ΦTP) = {qg , 0}, whereqg is the goal state.

The Track control policy monotonically decreases the orientation error between the current
velocity and the desired velocity. The approach uses some of the available acceleration to prevent the
orientation error from increasing as the trajectory evolves, and uses the remainder of the available
acceleration to decrease the error. If the speed,‖q̇‖, is less than the desired speed,‖X(q)‖, then
the speed scaling chosen in (4.12) guarantees that there will be acceleration remaining to reduce
the error. In the limit, as the velocity error approaches zero, the Track control policy is identical
to (4.8).

Lemma 4.1.4 Under the influence of the Track control policy, the system (4.7), with constraints
given in (4.9) and (4.10), and initial condition{q, q̇} ∈ D(ΦTP), converges to the integral curves
of X(q), defined in (4.11), in a way such that‖q̇‖ remains less than‖X(q)‖ and the trajectory
never exits the cell except by the outlet zone. For flow-through vector fields, the system trajectory
exits the cell in finite time. For convergent vector fields, the system converges to an arbitrarily small
neighborhood of the goal in finite time.

See Lemma B.3.3 in Appendix B for proof.
The Save policy may be used by itself over a given cell provided that other deployed policies

cover the entire cell; that is, that other cells overlap the entire Save cell as shown in Figure 4.6.
In other words, no matter where the system comes to rest within the cell, another policy should
capture that state. The Save policy is typically used over relatively large regions to capture fast
initial conditions that cannot be captured by the smaller cells that cover the larger region. This
allows the deployment to capture more adverse initial conditions in the free state space than possible
with a policy over a smaller configuration-cell. Since the Align policy subsumes the behavior of the
Save policy for high collision avoidance ratios, the Save policy is not needed if an Align policy is
deployed over the same cell.

The Align and Track policies are designed to work together. The intention of the Align policy
is to bring the system into alignment with the reference vector field, while also slowing the system;

46 c© 2007 David C. Conner

Figure 4.6: The Save policy is used to capture more adverse initial conditions. Inthis example, the
large Save cell, denoted by the thick line, is covered by four other cells.

thus, guaranteeing that Align prepares the Track policy; that is,ΦAP
� ΦTP . This is trivially

verified since the Align policy can bring the system to rest in the cell; thus, the Save policy is not
needed over the same cell. For flow-through style policies defined by the vector field given by (4.3),
define the conditionally positive invariant switchedFlow control policy composed of Align and
Track policies asΦF = {ΦT ,ΦA}. For the convergent policy using the vector field defined by (4.5),
define the switchedGoal control policyΦG = {ΦT ,ΦA}. In both Flow and Goal policies, theΦT

policy has highest priority. The Flow and Goal policies aremeta-policies.

Definition: Meta-policy: A meta-policyis a control policy over a local domain that is made up of
component policies and a switching strategy among the component policies.

For planning purposes, each meta-policy is treated as a single policy in the prepares graph.
The Flow policy causes the system to exit a given cell, therefore the policy parameters must be

tuned to respect the prepares relationship with a nearby policy domain. Letk denote the relative
priority of ΦFk with 1 being the highest. In order forΦFk+1

to prepareΦFk , the exit zone of its
component policyΦTk+1

must be contained in the closure ofD(ΦFk), and the speed profile along
the exit zone ofΦTk+1

must be less than or equal to the same speed profile inΦFk . This is done
by choosings∗; therefore, (4.12) represents an upper bound on the speed scaling. Thes∗ scaling
may need to be reduced when considering the prepares relationship. Thus, to ensure prepares,s∗

is reduced from (4.12) until the speed profile along the exit zone is below the speed profile of the
adjacent policies. The speed profile tests may consider eitherΦTk or ΦAk for determining the speed
profile that must be matched; considering onlyΦTk leads to smoother paths, but is more conservative
with respect to domain.

The simulation shown in Figure 4.7 is based on a disjoint convex polygonal decomposition of
the free workspace. The approach applies the switched meta-policy{ΦT ,ΦA} to each polygon; the
policy ordering is specified manually based on the given goal location. The policy free parameters
α > 0, 0 < µ < 1, andλ > 0 are defined as constants, and applied to all policies. The free parame-
tersK > 0 ands∗ > 0 are manually chosen for each policy to enforce the prepares relationship with
adjacent policies and to enforce constraints as described in Appendix B. This is done during the
process of ordering the policies by checking the speed profile for a fine sampling of points along the
exit boundary, against the speed profiles evaluated for the same points in the policy being prepared.

The simulation demonstrates policy switching, both among the meta-policies defined over cells,
and among the component policies of the individual meta-policies. The initial velocity, which points
toward the upper right corner of the initial cell, is chosen to just miss the cell boundary. The overall
hybrid policy activates the Align component policy first, followed by the Track policy of the same

c© 2007 David C. Conner 47

a) Course layout b) Decomposition and path

Save

Track
Align

c) Close-up of switched
behaviors.

Figure 4.7: Simulation of a constrained dynamical system showing the result of hybrid switching
policies. The initial velocity is to the upper right. The Align policy is activated first, with saving
action preceding the transition to aligning action. The Track policy then takes over and drives the
system out the first cell, and through the entire region by composing the local control policies.

meta-policy. In this example, the initial velocity is such thatζc > µ, and the system must first
activate the “saving” action of the align control policy; this reducesζc. Figure 4.7-c differentiates
between the saving action (ζc ≥ µ) and the aligning action (ζc < µ) during execution of the Align
policy. After the system switches to the first Track component policy, the system exits the domain
of the first meta-policy, and enters the domain of the Track component policy in the adjacent cell.
The induced trajectory converges to the goal as desired, while avoiding the obstacles; the overall
hybrid control policy switches meta-policies as the system moves from cell to cell.

4.2 Policy Space Planning and Control

The vector field definitions, coupled with the kinematic control law and Save, Align, and Track
policies for second-order systems, form a palette of generic policies. The policies are instantiated in
the system workspace by specifying a convex polytope, and the necessary policy parameters,K, α,
s∗, µ, λ, andqg, as needed. This section presents examples and techniques for instantiating policies
in the system state space for both the kinematic and dynamical systems defined in Section 4.1.2.
The examples demonstrate a variety of approaches to planning and control design using the generic
policies defined above in a hybrid control framework.

4.2.1 Basic Scenarios

For the basic scenarios, we assume a bounded workspace with polygonal obstacles, and that a
disjoint, finite convex decomposition of the free workspace is given. The collection of polygons
covers the free workspace. An undirected adjacency graph, which encodes the relationship between
cells, is given.

A simple planning approach is to define a sequence of cells that must be navigated, as described
in Section 3.5.1. The policies are specified as needed. Given the adjacency graph, deploying a
hybrid policy is as simple as planning a walk through the adjacency graph that connects the cells
containing the start and goal points. First, a convergent policy is deployed over the cell containing
the goal. Then, neighboring cells in the walk define flow-through policies such that the outlet zones
coincide with the common boundary of neighboring cells; this is specified based on the adjacency
relationship between neighboring cells along the adjacency graph walk. The choice of exit faces

48 c© 2007 David C. Conner

turns the undirected adjacency graph into a directed prepares graph that isbuilt during planning.
The policy parameters are specified as needed to enforce the velocity and acceleration bounds and
prepares relationships.

Figure 4.8 shows an example simulation of this technique for a kinematic system. Policy switch-
ing is based on domain inclusion tests for the sequence of policies. This approach results in a
complete navigation method for kinematic systems provided the available cells cover the free space,
but only uses some cells in the sequence; as with all sequence-based approaches, this approach is
less robust than order-based approaches.

In order to provide a global feedback policy that does not require replanning, all cells in the
disjoint covering should be used for the total order-based hybrid control policy described in Sec-
tion 3.5.2. Since the cells cover the free space, the hybrid control policy is complete for kinematic
systems; the resulting global hybrid control policy brings any state within the domain of the local
policies to the overall goal. Figure 4.4 shows an example of this technique for second-order systems
with unbounded acceleration. The policy parameters for each cell are chosen to enforce the prepares
relationship. This method is complete for any initial condition in the domain of one of the policies.

Figure 4.8: Simulation of a kinematic system. The dark line shows the path taken, darkregion
denotes the boundary of the free space, and dotted lines show the decomposition into convex poly-
gons.

c© 2007 David C. Conner 49

4.2.2 Reactive Automaton Based Planning

Thework in this thesis enabled Kress-Gazitet al. [68] to generate reactive automata with policies
defined over convex polytopes for fully actuated systems. They use the kinematic policies defined
in Section 4.1 as the foundation for hybrid control synthesis technique. The low-level continuous
behavior is governed by the continuous execution of the local feedback control policies; the high-
level behavior is governed by the discrete transitions in the finite automaton. This approach allows
the system to change behaviors based on information gathered at run time.

The low-level policies are defined based on a disjoint decomposition of the planar workspace
into convex polygons. For each cell, a set of control policies is defined such that the system can exit
the cell and enter any of the neighboring cell. The undirected adjacency graph associated with the
decomposition is converted into a directed prepares graph, which encodes all of the transitions the
system can make between cells.

The automaton synthesis algorithm takes as input the possible transitions encoded in the pre-
pares graph, the allowable discrete inputs sensed by the robot, and behavior specification given in
LTL. The automata synthesis extracts an automaton that specifies the policy switching based on the
discrete sensor inputs; this allows the user to specify behaviors at a high-level, with the low-level
motion induced by the policy composition governed by the automaton.

Figure 4.9 shows an example scenario where a robot is tasked with patrolling a nursery listening
for crying babies. When crying is detected, a discrete sensor signals the automaton, and the hybrid
control policy induces the robot to search for an adult to alert. This simulation demonstrates the
how the local feedback control policies can be combined with automaton synthesis tools to gener-
ate reactive hybrid control policies. During execution, the automaton transitions are governed by
changes to discrete inputs based on sensor measurements and the continuous transitions between
policy domains. The hybrid control policy induces continuous behavior, which changes based on
the sensed inputs, that satisfies the high-level specification. The controller synthesis is enabled by
the composable policies and discrete transition relationship encoded by the prepares graph.

0 100 200 300 400 500 600 700
0

50

100

150

200

250

300

350

400

1

2

3

4

5 6

7

8

9

10

a) No crying babies
0 100 200 300 400 500 600 700

0

50

100

150

200

250

300

350

400

1

2

3

4

5 6

7

8

9

10

b) Crying baby in cell 4, adult in cell 8

Figure4.9: Nursery simulation using automaton that encodes “check for crying babies in cells 2
and 4, when crying detected, search for and alert adult in cells 6, 7, or 8.” Low-level behavior
governed by kinematic policies described in Section 4.1. Simulation and figures are courtesy of
Hadas Kress-Gazit and George J. Pappas, GRASP Lab, University of Pennsylvania.

50 c© 2007 David C. Conner

4.2.3 Global Policy Design: The “Dynamical P” Problem

As a demonstration of the power and flexibility of the hybrid control approach for second order
systems, this section presents what we term the “dynamical P” problem. Figure 4.10 shows a
collection of cells that cover a workspace, which is not simply connected. The goal is designated
in the lower portion of the loop inside region ‘a’; a decision about which way to travel around the
loop to get to the goal must be made. For kinematic systems, this choice is typically made based
on path length from the initial configuration to the goal. For constrained dynamical systems, the
choice must take into consideration the initial velocity of the system. The hybrid control approach
taken in this thesis allows the decision to be made at execution time based on which policy in a
predetermined deployment contains the current state.

This section describes a simulation that assumes an idealized dynamical robot,q̈ = u with
q, u ∈ IR2, subject to both velocity and acceleration constraints in the form of (4.9) and (4.10). The

a) b) c)

d) e) f)

g) h) i)

Figure4.10: Configuration space cells used to define local control policies for “dynamical P” sim-
ulation.

c© 2007 David C. Conner 51

policy deployment,

U ′ =
{

ΦGa ,ΦFb ,ΦFc ,ΦFd ,ΦFe ,ΦFf ,ΦFg ,ΦSh ,ΦSi

}

,

is generatedby hand. The first subscript refers to the ‘Goal’, ‘Flow’, and ‘Save’ hybrid policies
defined in Section 4.1.2; the second subscript corresponds to the configuration-cells shown in Fig-
ure 4.10. The policies are executed according to the ordered listU ′, with ΦGa being the highest
priority. At each time step, the list is searched from highest to lowest priority until a domain that
contains the initial state is found as described in Section 3.5.2. This example allows the demon-
stration of switching behavior in simulation, while remaining simple enough to present in detail;
additional deployments and configuration-cells are possible.

The deployment uses one Goal policy (ΦGa) and six Flow policies (ΦFb ,ΦFc ,ΦFd ,ΦFe ,ΦFf ,
andΦFg) to provide a disjoint cover of the free configuration space. The Flow policies are config-
ured to prepare the adjacent policy of higher priority. The ‘Goal’ and ‘Flow’ policies use ‘Align’ and
‘Track’ component policies; therefore, there are actually fourteen total component policies deployed
for this group. Together, these policies induce a piecewise potential-based navigation function for
any state within the domains of the Goal or Flow policies.

To capture faster initial velocities, the two Save policies are deployed in the large corridor. The
Save policyΦSh , whose cell is shown in Figure 4.10, covers the corridor from the bottom to the top
of the obstacle forming the “P”; thus,ΦSh � ⋃ {ΦGa ,ΦFb ,ΦFc}. Any state savable by this policy
prepares the Flow or Goal policies in a way that causes the system to enter the lower half of the
loop from the left. The second Save policy,ΦSi , encompasses the entire large corridor on the left
side; thus,ΦSi �

⋃
{

ΦGa ,ΦFb ,ΦFc ,ΦFg

}

. Anything savable byΦSi that comes to rest inΦFg will
enter the lower loop from the right by traveling above the obstacle.

Figure 4.11 shows three initial conditions that demonstrate the change in behavior as a response
to changes in the initial conditions. The first case, which starts slowly straight up, activatesΦFb and
ΦGa . The second case, which starts to the right, activatesΦSh , ΦFc , andΦGa , in that order. The
final case, which starts to the left with a high initial velocity, activatesΦSi , ΦFg , ΦFf , ΦFe , ΦFd ,
andΦGa , in that order. The switching is automatic based on the state being within the domain of
the highest priority control policy as specified by the deployment.

52 c© 2007 David C. Conner

S

G

Figure 4.11: Deployment of local policies induces a change in the route taken given three different
initial conditions. The spacing of the dots and circles corresponds to different intervals of elapsed
time.

4.2.4 Automated Policy Instantiation and Deployment

This subsection explores an approach to automating the policy deployment for second-order sys-
tems. In the above examples, the policy parameters are specified by hand to enforce the required
prepares relationship among policies. In this section, the selection of cells and specification of pol-
icy parameter values is automated. The simulations of the resulting deployment provide additional
demonstrations of the flexibility of planning in the space of control policies.

We assume a cell decomposition that contains a rich collection of polygons – large ones and
small ones, disjoint and overlapping – is given. Overlapping cells allow the second-order policy
domains to cover a large fraction of the free state space. The collection of cells forms the foundation
of the automated instantiation process, which automatically chooses a cell from the collection, and
then specifies the policy parameters.

In this case, automatic instantiation means specifying the goal set, that is which facet, and free
parameters –K, α, s∗, µ, andλ – over a chosen cell. The policy ordering is determining during
instantiation to guarantee the global behavior. This demonstration focuses on building a hybrid
global control policy that addresses a single navigation task using a total order of policies defined
over convex polygons.

Several choices are made to simplify the deployment strategy. First, policies are instantiated
one at a time. Second, the automated deployment algorithm only uses each cell once; that is,
only one facet is chosen as an exit for flow-through policies. Third, the algorithm does not test

c© 2007 David C. Conner 53

that a given policy increases the size of the domain of the hybrid policy definedby previously
deployed policies. Therefore, it is possible that existing policies maydominate[88] the current
policy, meaning that the previously instantiated policy domains may completely contain the policy
domain being considered. Although retaining dominated policies leads to policies that are never
invoked, the overall correctness of the hybrid policy remains since the highest priority policy is
always used. As a simpler version, a cell is discarded if the cell is completely contained within
another cell.

To reduce the computational expense, the extended prepares tests are not conducted. Recall,
that the extended prepares tests is based on a policy goal set being contained in the union of several
policy domains Instead, the automated approach uses the simpler prepares relation between two
policies. One exception is that Save policies are deployed over large regions of configuration space
in order to capture extreme initial velocities and enlarge the fraction of free state space in the overall
domain. The decomposition used to deploy flow policies covers all of the free configuration space;
therefore, the Save policy trivially prepares the other policies since the goal state is at rest. With
these caveats, Algorithm 1 addresses the automated deployment problem for the specific policies
developed in this section in a way that integrates the planning and policy specification stages.

The algorithm begins by choosing a cell from the collection of convex polygonal cells to serve as
the goal cell (line 2). The cell is chosen according to some heuristic from those cells that contain the
designated goal. For this demonstration, the heuristic is calculated by triangulating each polygon
by including the goal point as a vertex. The polygon with the largest ratio of minimum triangle
area (Amin) and maximum triangle area (Amax) weighted by the total polygon area (AP) is chosen;
that ish = AP

Amin
Amax

. This results in choosing a relatively large polygon, while avoiding elongated
ones; see Figure 4.12. The Goal policy parameters are defined to satisfy the system constraints. The
deployment (line 4) and list of unprepared policies (line 5) are initialized to include only the Goal
policy. The goal cell is used, so it is removed from the list of available cells (line 6); that is, it is
taken out of the collection of convex polygonal cells available for instantiation.

Amin

Amin

Amax

Amax

qgqg

Figure 4.12: The heuristic for evaluating goal polygons weights the polygon area by the area ratio of
smallest and largest triangles in a triangulation that includes the goal point. In this case, the policy
on the left is preferred.

54 c© 2007 David C. Conner

Algorithm 1: AutomatedDeployment for Fully Actuated Systems
Input: Finite collection of convex polygonal cellsK = {P1, . . . ,PM}

that covers the free configuration space, and a goal configurationqg
Output: Ordered collection of instantiated control policies

U ′ =
{

Φ1, . . . ,ΦO(M)

}

(1) LetK′ = {Pi ∈ K | qg ∈ Pi}
(2) ChosePg ∈ K′ according to a heuristic
(3) Parameterize the goal policyΦG = {ΦT ,ΦA}g based onPg, qg, and con-

straints
(4) SetU ′ = {ΦG} (the deployment)
(5) SetV = {ΦG} (list of unprepared policies)
(6) SetK = K\Pg (don’t reuse cells for simplicity)
(7) while V 6= ∅
(8) ChooseΦc ∈ V based on a heuristic (e.g., highest priority or minimum

distance toqg)
(9) LetV = V\Φc (remove policy from list of unprepared)
(10) LetPc be the cell associated withΦc

(11) LetK′ =
{

Pi ∈ K | there is a face of Pi contained in P̄c, the closure of Pc
}

(12) LetK = K\K′ (don’t reuse cells for simplicity)
(13) ∀Pi ∈ K′ set parameter values forΦi = {ΦT ,ΦA}i such thatΦi � Φc

(14) LetV ′ = {Φi | Pi ∈ K′and Φi � Φc}
(15) OrderV ′ based on some heuristic(for example average cost to execute

or distance toqg)
(16) U ′ = {U ′,V ′}, i.e. add orderedV ′ to the end ofU ′

(17) V = {V,V ′} (update list of unprepared policies)
(18) endwhile
(19)
(20) Deploy ‘Save’ policies over any unused cells
(21) while K 6= ∅
(22) Choose largestPi ∈ K
(23) LetK = K\Pi
(24) Deploy Save policy(ΦS)i based onPi
(25) U ′ = {U ′, (ΦS)i}
(26) endwhile

The bulk of the algorithm deploys policies to prepare previously deployed policies, building
a total order list in the process. The algorithm is greedy in the sense that it uses cells as soon as
an facet is completely contained in the domain of the previously deployed policies; it is possible
that delaying the use of a particular cell would allow a larger domain. The prepares test uses the
more restrictive test that a cell facet be completely contained in the cell closure of the policy it is
preparing (line 11). The deployment occurs in “layers” as each deployed policy is evaluated to see
what unused cells can prepare the deployed policy. Each layer is ordered (line 15) before the new
policies are added to the deployment (lines 16 and 17). An alternative scheme would be to swap
lines 15 and 17, only addΦc to U ′ in line 16 (instead ofV ′), and reorderV instead of justV ′ in the
new line 17.

The finalwhile loop in Algorithm 1 is used to deploy individual Save policies to capture larger
regions of the free state space for these second-order systems than is possible with the cells that

c© 2007 David C. Conner 55

prepare other cells. Implicit in this coding is the assumption that the cells associatedwith previously
deployed Track policies cover the free configuration space.

To fully demonstrate automated deployment, Algorithm 1 is implemented in simulation. The
simulation is applied to the environment shown in Figure 4.13. A convex decomposition with 603
cells is given. The large number of cells includes overlapping cells and multiple disjoint cover-
ings of the free configuration space. Given specification of an arbitrary goal point, the algorithm
automatically selects the individual cells and calculates the required parameters during policy de-
ployment.

The simulation results of the global switched control policy are shown in Figure 4.13. Four
different initial conditions, starting from two separate configurations, are simulated. The simula-
tion demonstrates the policy-induced decision making that is inherent in the policy composition
approach.

This chapter developed a policy design approach for fully actuated systems with input con-
straints. We design policies for both flow-through and convergent goals over convex polytopes;
both kinematic and second-order systems are considered. These policies satisfy the composability
requirements, enabling the policies to be deployed in our hybrid control framework. These com-
posable policies enable a variety of discrete planning techniques; this demonstrates the flexibility
of the policy composition approach. The examples range from simple sequence-based planning, to
automatic synthesis of reactive automata based on high-level behavioral specification. The compo-
sition of the local policies induces different behaviors based on the initial conditions and the specific
policy domains, without requiring re-planning. The drawback to these policy designs is that because
the systems are idealized, the results are not directly transferable to more constrained systems.

Figure 4.13: Automated deployment simulation for four separate initial conditions.

56 c© 2007David C. Conner

57

Chapter 5

Application to Single-bodied Wheeled Mobile Robots

This chapter extends our approach to integrating planning and control to single-bodied wheeled mo-
bile robots. While the results from Chapter 4 show the promise of our hybrid control approach, the
numerous constraints found in real mobile robots render the techniques for fully actuated systems
inapplicable. This chapter presents the design of composable policies that apply to single-bodied
wheeled mobile robots while satisfying the composability requirements of Chapter 3. This opens
up the many symbolic reasoning techniques described in earlier chapters to more realistic systems
with multiple interacting constraints.

This chapter begins with a discussion of some of the system constraints and the modeling frame-
work used to address them. Our basic policy design approach is presented in the chapter’s second
section. The third section presents two specific policy designs that follow the basic approach and ad-
dress the constraints for three wheeled mobile robot models. The chapter’s fourth section discusses
techniques that are used to verify that the policy designs satisfy the composability requirements. The
chapter’s fifth section discusses approaches to instantiating the generic policies, including a semi-
automated approach. The sixth section discusses techniques for generating the prepares graph. The
chapter concludes with a discussion of an approach to quantifying the relative completeness of the
collection of policies.

5.1 System Constraints and Modeling Framework

Mobile robots introduce many complications that are not addressed by the policies for fully actuated
idealized systems. This chapter focuses on policy designs that address three of these complications:
body size/shape, nonholonomic constraints induced by wheels, and input constraints. This section
discusses the implications of these constraints, and provides an overview of the modeling framework
used in our control design. Appendix A provides a detailed overview of the framework, including
formal definitions and derivations for the specific systems used in the this thesis.

5.1.1 Pose Space Constraints

The robot is a single convex body that moves in the planar workspace. The location of every point
in the robot can be expressed relative to a single reference frame attached to the robot body. The
robotpose, is locally represented byg = (x, y, θ), which specifies the position (x, y) and orientation
(θ ∈ (−π, π]) of this body-fixed frame relative to the global fixed reference frame in the workspace;
see Figure 5.1. The pose spaceG is the space of all possible poses. In differential mechanics terms,
the pose evolves on theSE(2) manifold; see Appendix A for details.

(x, y) θ

W0

Figure5.1: The robotposeis the position and orientation of the robot body, denotedg = (x, y, θ),
relative to a global workspace frameW0. The configurationof the robot isq = {g, r} wherer
represents internal variables specifying such things as steering angles and wheel rotations.

The obstacles in the environment constrain the set of admissible robot poses. For a pose to be
collision free, the body must not intersect any obstacles in the environment. LetR (g) ⊂ W denote
the workspace area occupied by the robot at poseg1. Stated formally, the requirement that the robot
not intersect any obstacles at a given a pose is, for all obstacles,R (g)

⋂

Oi = ∅. The set of collision
free poses, orfree pose space, is denotedGfree, where

Gfree =

{

g ∈ G | R (g)
⋂⋃

i

Oi = ∅
}

⊂ G.

The free pose space is the region that the robot must navigate through to reach its goal; that is, the
control policy must induce pose velocities that keep the system within the free pose space during
travel.

5.1.2 Nonholonomic Constraints

The robot is driven by wheels in contact with the ground; thus, the system is subject to nonholo-
nomic constraints induced by rolling without slipping or sliding sideways[1, 22, 87, 94]. For
example, the systems in this thesis cannot move instantaneously sideways relative to the forward
facing pose. Many systems are also subject to steering bounds that require translation in order to
rotate. These constraints limit the pose velocities to a sub-manifold of the full pose tangent space.
The control policy design must induce pose velocities that respect the nonholonomic constraints,
otherwise the control is not realizable on a given system.

To fully specify the position and motion of the robot, the drive wheel systems must be specified
with variables in addition to the pose. These variables, denoted byr, are termedshape2 vari-
ables [96]. Examples of shape variables include drive wheel rotation angles and steering wheel
positions for Ackermann steered cars. Therefore, the robot configuration is fully specified by
q = {g, r}; that is, the robot pose plus any necessary shape variables,r. Denote the shape space as
R. The shape variables do not directly impact the robot pose, and do not cause intersection with the
workspace obstacles. Thus, the robot free configuration space isQfree = Gfree ×R.

1Note,thatR (g) = R (q), whereR (q) was defined in Chapter 3. Only the pose portion of configuration impacts the
setR.

2In differential mechanics,shapevariables are also calledbasevariables and theposevariables are termedfiber
variables; see Appendix A for details.

58 c© 2007 David C. Conner

This thesis is concerned with so calledpurely kinematic systemswhere there are sufficient
independent nonholonomic constraints to constrain the equations of motion to a first order, or
purely-kinematic, relationship between shape velocities and pose velocities [1]. That is, there exists
a mappingA (q) : TrR→ TgG derived from the nonholonomic constraints such thatġ = A (q) ṙ.

For purely kinematic systems, the control of pose velocities is induced via the shape variable
velocities through the mappingA (q). This thesis focuses on systems that directly control the shape
velocities, that iṡr = u for u ∈ U a bounded input set; therefore, the pose velocities areġ = A (q)u.
The mappingA (q) is nonlinear, which renders the control problem of choosing inputs to generate
a given pose velocity also nonlinear.

Example: Differential-drive robot

As an example, consider the case of a standard differential drive robot shown in Figure 5.2. The
robot body pose isg = (x, y, θ). The robot is driven by two wheels in contact with the ground; de-
note the rotation of each wheel about its axle asr = {ψL, ψR} for left and right wheels respectively.
The vehicle is prevented from sliding sideways relative to its instantaneous heading, and each drive
wheel is assumed to roll without slipping. These three independent nonholonomic constraints are
represented as

sin θ − cos θ 0 0 0
cos θ sin θ −c −R 0
cos θ sin θ c 0 −R

 · q̇ = 0 ,

O

c
c

θ
(x, y)

ψR

Figure 5.2: Differential drive robot with two drive wheels{ψL, ψR} as shape variables and body
pose given byg = (x, y, θ). The full configuration isq = (x, y, θ, ψL, ψR).

c© 2007 David C. Conner 59

whereq̇ =
[

ẋ ẏ θ̇ ψ̇L ψ̇R
]T

, R is thedrive wheel radius, and2c is the vehicletrack3. The

derived mapping between shape velocities,ṙ =
[

ψ̇L, ψ̇R
]T

, and pose velocities,̇g = A (q) ṙ, is

A (q) =

R
2 cos θ R

2 cos θ
R
2 sin θ R

2 sin θ

− R
2c

R
2c

 . (5.1)

5.1.3 Input Bounds

The shape variables and their derivatives, that is the shape velocities, may be bounded based on
safety or mechanical limitations. For example, the electric motors commonly used to drive mobile
robots have a top speed based on the motor characteristics and available voltage. Speed limits may
also be imposed to provide safe operation in given environment. These speed limits may be direct
limits to the shape velocities, or limits on the pose velocities, which are in turn mapped to shape
velocity limits. In either case, the limits are ultimately applied to the control inputs. Shape velocity
bounds map directly to input bounds for systems withṙ = u.

Other limits may be imposed on the shape positions; for example, steering wheel positions may
be mechanically limited. These constraints limit the shape space directly, and therefore the set of
admissible shape velocities along the shape space boundary. That is, the shape velocities must not
be outward pointing along the shape space boundary. Together, these constraints act to limit the
allowable inputs available to the system at a given configuration.

The constraints interact to complicate the control problem. Since the induced pose velocities
must keep the system in the free pose space, the pose velocities are constrained along the free pose
space boundaries. These constrained pose velocities constrain the set of allowable shape veloci-
ties via the mappingA (q); for kinematic systems, these constrain the set of admissible inputs. In
defining the mapped pose velocity constraints, the policy must consider both pose velocities and
“important” shape variables that modifyA (q). For some system models, such as the differential-
drive system highlighted above,A (q) only depends on the pose; other systems, such as automobiles,
haveA (q) mappings that depend on both pose and shape variables. In these later cases, pose veloc-
ity constraints may induce constraints on the shape variables, which in turn will induce constraints
on the shape velocities. That is, the shape velocities will be limited to those that do not lead to
violations of the shape variables. Input bounds limit the set of achievable velocities, determined by
the mappingA (q).

5.2 Basic Design Approach

In the context of this framework, navigation refers to motion in the free pose space, while control
is effected in the shape space. The mappingA (q), which is derived from the nonholonomic con-
straints, connects the navigation and control problems. This section presents a basic policy design
approach that makes use of theA (q) mapping to build policies that satisfy the composability re-
quirements set forth in Chapter 3. The policies specify inputs from the bounded input set that induce

3In mobile robotics, the distance between drive wheels is sometimes referred to as thewheelbase. In automotive terms
the track is the distance between drive wheels and thewheelbaseis the distance between the front and back wheels [16].
This thesis considers multiple robot models, including automobiles; therefore, the standard industrial terms are used.

60 c© 2007 David C. Conner

a pose velocitieṡg = A (q)u suchthat the system avoids obstacles and reaches a designated local
goal.

Our approach defines the policies over collision free regions of pose space. We redefine the
term cell to specify a region of free pose space that is used to define a local policy. The cells are
designed such that under the influence of an associated control policy, the system is induced to
move from any pose in the cell to a relatively smaller subset of the cell designated as the goal set.
In this way, the cell defines a “funnel” that takes a relatively large region to a relatively small goal
set. Figure 5.3 shows a conceptual example of a cell. The policy design specifies shape velocities
that induce the desired convergence to a designated goal set within the cell. As the basic navigation
problem addressed in this thesis is completely specified in terms of motion in the free pose space,
specific trajectories in the shape space are not a primary concern, provided they satisfy the necessary
constraints.

The cells, denotedΞ ⊂ Gfree, are restricted to compact, connected, full dimensional subsets of
IR3 without holes. That is, the cells are defined in the localIR3 chart of the pose space. The cell
goal set is a subset of the closure of the cell; for flow-through policies the goal set is on the cell
boundary. We assume the cell boundary is composed of parameterized surface patches defined by
differentiable functions, such that an outward pointing normal is well defined almost everywhere.
The surface patches define a continuous cover of the cell boundary; we refer to this boundary surface
as a piece-wise parameterized surface.

In defining the local cells, there are several competing objectives. First, we desire cells with
simple representations that are easy to parameterize. Additionally, we desire cells that have simple
tests for inclusion so that the system can determine when an associated policy may be safely used.
On the other hand, for a given policy goal set, we want the cell to capture as much of the free pose
space as possible given the system constraints. That is, we want the policies to be “expressive.”
Given the system constraints, there is a trade-off between the size of the goal set and the size of the
cell. Larger goal sets tend to allow larger cells; however, the goal sets should be small enough to be
contained in another cell. This interplay between the goal sets and cells is one of the basic design
challenges of defining composable policies. The cells should also admit feasible policy designs

Figure 5.3: A schematic representation of a cell defined in the three dimensionalbody pose space.
In this case, the goal set is the two-dimensional set of points at the small end of the cell.

c© 2007 David C. Conner 61

over the entire pose space region. This thesis looks at a set of relatively simplecell designs, and
demonstrates what can be accomplished with them.

The local policy is defined over the cell; that is, the cell defines the pose space domain of the
local policy. Thus, the composability properties that hold for the policy domain must also hold
for the cell. That is, the cell must be contained in the free pose space, and must be conditionally
invariant under the influence of a local policy that brings any pose in the cell to its goal set in finite
time. Furthermore, the cell should admit a simple inclusion test. These requirements on the policy
domains provide limits on the freedom to define cells that result in valid policies.

Recall from Chapter 3 that the velocities on the domain boundary must point inward to induce
conditional invariance, except at the goal set for flow-through policies. Thus, for all posesg in the
cell boundary, there must exist an achievable pose velocityġ such thatn (g)T ġ < 0, wheren (g)
is the outward pointing normal. Using the mappingA (q), whereq = {g, r}, this pose velocity
constraint is mapped to a half space constraint on the shape velocities; that isnTA (q) ṙ < 0. If
there does not exist such a validṙ in the bounded shape tangent space, then the cell is not valid.
For kinematic systems, wherėr = u with u ∈ U a bounded space,nTA (q)u < 0 provides an
additional input constraint along the cell boundary.

Arbitrary cell shapes are not allowed; a cell can only be valid, if there exists a valid input that
keeps the velocity inward pointing on the cell boundary. Letω = n (g) · A (q) andω− be the
negative half space inU defined byω and the origin ofU ; this is shown in Figure 5.4. Along the
cell boundary, anyu ∈ ω−

⋂U renders the cell conditionally invariant. Because theω constraint is
a function of both the pose along the boundary and the boundary normal, the boundary constraint
thatω−

⋂U 6= ∅ limits the size and shape of the pose space cell.

The constraints described previously provide absolute limits on the size and shape of a given
cell. Additional limitations will be imposed by the specific policy designs. Given a particular cell,
the aim of control policy design is to specify a mapping from any pose in the cell to an input in the
bounded input space that induces the desired behavior. That is, we seek a mappingΦ : Ξi → U such
that the induced flow enters the designated cell goal set in finite time while satisfying conditional

ω

u1

u2

U

ω−
⋂U

Figure 5.4: The conditional invariance requirements for kinematic systems induce constraints on
the input set. The cell size and shape is limited such thatω−

⋂U 6= ∅ for ω = n (g) · A (q) for all
g in the cell boundary.

62 c© 2007 David C. Conner

invariance. Defining a valid policy requires verifying that the policy design beingapplied over a
particular cell satisfies the composability requirements of Chapter 3. In other words, a given policy
design may fail to take full advantage of the capabilities of the system and further limit the size and
shape of the cell.

For the fully actuated idealized policies described in Chapter 4, the policy design was accom-
plished by defining a reference vector field over the cell such that the vector field flow entered the
goal set. The mapping from configuration to input was based on the reference vector at a given
configuration. The vector field serves to encode the desired behavior over the entire cell. For non-
holonomic systems, the nonlinear relationship between inputs and pose velocities makes it difficult
to define a reference vector field over a given pose space cell.

Our approach for purely kinematic systems is to define a set of input constraints for each pose
in the cell. By carefully defining the constraints, any input chosen from the constrained input set
U induces a behavior that satisfies the requirements of Chapter 3. We take the constraint definition
approach for two reasons. First, defining a continuous vector field that satisfies the nonholonomic
constraints is difficult due to the complex cell shapes and nonlinear constraints. It is easier to
define a set of pose velocity constraints;A (q) provides a convenient mapping between pose velocity
constraints and input constraints. For example, consider the boundary constraintsnTA (q)u <
0. As the inputs are not subject to the differential constraints, the selection of a valid input is
generally easier than defining the specific pose velocity. Second, numerous constrained optimization
techniques allow additional information to be incorporated into the choice of a control input from
the valid set. For example, we can construct a cost function that penalizes rapid input changes but
rewards moving fast and maximizing the distance from the defined constraint. Thus, while any
u ∈ ω−

⋂U is valid for a givenω constraint, constrained optimization allows us to select the “best”
input according to some cost function.

5.3 Generic Policy Designs

This section presents two generic policy design approaches that satisfy the composability require-
ments for purely kinematic systems. This section gives an overview of the specific designs; the
following section discusses how the composability requirements are verified.

Both generic policy designs defined below are flow-through style policies defined over pose
space cells. As stated above, each cellΞi is a subset ofIR3, which represents a local chart of the
pose space with{x, y, θ}-coordinate axes. We choose to define generic cells relative to a local
coordinate frame attached to the center of the cell’s designated goal set; letggoal denote the goal set
center in the world frame and{x′, y′, θ′} denote the coordinate axes of the local reference frame.
See Figure 5.5 for details.

Given a generic cell specified in the local coordinate frame, the cell is instantiated in the pose
space by specifying the location ofggoal and the orientation of the local frame relative to the world
frame. We restrict the policy goal set to lie within a plane orthogonal to the world framexy-plane;
thus the localθ′-axis is parallel to the worldθ-axis. We restrict the positivex′-axis, which corre-
sponds to the goal set normal, to be aligned with the robot direction of travel at the configuration
corresponding togoal. Thus, the localx′-axis is normal to the cell goal set, and outward pointing
with respect to the cell boundary; we refer to the orientation of thex′-axis as thegoal set heading.
Although these choices constrain the policy freedom, they make specifying the free parameter val-
ues more tractable by limiting the choices. Letθgoal ∈ (−π, π] specify the orientation of thex′-axis,
and letggoal = {xgoal, ygoal, θgoal + ∆θ} ∈ IR3. For forward motion, thex′-axis is aligned with the

c© 2007 David C. Conner 63

O

aa

bb

y′

x′
ggoal

x

+π
2

−π
2

aa
bb y′

θ′

ggoal

a) Goal set projected onto plane b) Goal set plane.

Figure 5.5: Definition of goal set. a) projection ontoxy-plane with some reference velocity vectors
shown, b) goal set plane demonstrating restriction imposed by continuity. The six smaller arrows
denote valid velocities that cross the goal set. Points ‘aa’ and ‘bb’ are shown in both figures for
reference.

robot heading, and∆θ = 0. For reverse motion, thex′-axis is opposite the robot heading, therefore
∆θ = ±π.

The required invariance properties for flow-through policies lead to some guidelines when defin-
ing a valid goal set. The goal set defined as described above appears as a line segment when
projected onto thexy-plane. Consider Figure 5.5-a; the system crosses the goal set as indicated by
the smaller arrows. For a flow through policy, the orientation of the body velocity vector must be
within ±π

2 of the goal set heading. For systems whose instantaneous forward body velocity is along
the axis defining the body orientation, the restriction isθ ∈

[

θgoal − π
2 + ∆θ, θgoal + π

2 + ∆θ
]

. On
the goal set boundary, the instantaneous pose velocity cannot be transverse to the goal set boundary;
that is, any velocity component not orthogonal to the goal set must be pointed into the goal set.
For the systems considered in this thesis, the instantaneous pose velocity is along the body heading,
which puts a restriction on the velocities at the endpoints, as shown in Figure 5.5-b. The system
constraints and continuity restrictions will impose additional constraints on the goal set; these are
conceptually represented by the arcs that bound the goal set in Figure 5.5-b. The exact shape de-
pends on the specific policy design. In general, the goal set is “tilted” relative to thexy-plane.

The remainder of this subsection describes the definition of the pose space cells relative to the
local cell frame. That is, a parameterization ofp = {x′, y′, θ′} is given. Given the goal set center
ggoal, any pointp represented in the local generic cell frame can be mapped to a pointg ∈ G by

g (p) =

cos θgoal − sin θgoal 0
sin θgoal cos θgoal 0

0 0 1

 p+

xgoal

ygoal

θgoal + ∆θ

 . (5.2)

Although similar to a homogeneous transform, the non-standard transformation (5.2) is required
due to the placement of the cell withinIR3. The cell is both positioned and rotated byθgoal; ∆θ is
used to position the cell along theθ-axis, but does not affect the orientation of the cell.

64 c© 2007 David C. Conner

A key feature of these policies is that a valid policy may be relocated to a new goalpoint within
the free pose space without impacting the conditional invariance, finite time convergence, or simple
inclusion test properties; the safety of the policy with respect to collision must be verified a the new
reference point. The proofs of these properties are based on simple calculations that are invariant
under rigid body transformation within the pose space. This means that once these properties are
verified for a given set of policy parameters, the policy may be relocated by re-specifying the goal
set center. As a policy cell is relocated, the requirement that the cell lie within the free pose space
must be verified. For the simple inclusion tests, special consideration must be taken as the cell
orientation dimension does not wrap around at±π and can be place at arbitraryggoal poses; for
these cells in this thesis, it is normally sufficient to tests inclusion based ong = (x, y, θ + 2nπ)
wheren ∈ {−1, 0, 1}.

We now present a high level overview of two families of generic policies. The policies have
free parameters that govern the specific size and shape of the policies; for valid parameter values,
the policies are composable within our hybrid control framework.

5.3.1 ‘PF’ Policy Design

The first family of generic policies is based on workspace path segments, which are used to define a
parameterized cell in pose space. The path segment is lifted to a curve in pose space by considering
the orientation of the path tangent as the desired system orientation, with the goal set center at one
end of the pose space curve. A ‘tube’ is defined around the pose space curve to define the cell
boundary. Figure 5.6 shows an example of this cell.

The policy design is based on a variable structure control approach to path following, which
gives the policy its ‘PF’ name [4]. The PF policy defines a “sliding” control surface within the cell
boundary tube. For a given robot model, the policy defines a control strategy that causes the system
to steer toward the sliding surface, then along the sliding surface towards the pose space curve and
the goal set center. For kinematic systems, the sliding surface defines a velocity constraint at each
pose; the constraint is then mapped to a constraint on the input space, where a simple optimization
is used to chose a valid input.

In addition to the goal set center, the policy free parameters include the width of the tube, the
curvature of the workspace path, arc length of the path segment, and shape of the sliding surface.
Valid values of the free parameters, that is values that induce composable behavior, are limited by
the input constraints and specific robot system model. Thus, the composability requirements must
be verified for a given set of parameter values

a) Workspace path with local frame defined b) Cell boundary and “sliding”control surface.

Figure 5.6: Control policy based on path following control law given in [4].

c© 2007 David C. Conner 65

See Appendix D for details about the functions used to define the cell boundaryand sliding
surface, derivations to show correctness, and techniques to verify that PF policies satisfy the three
composability requirements.

5.3.2 ‘SQ’ Policy Design

The second family of policies are defined using level sets of super quadric functions, which gives the
policy its ‘SQ’ name. Two functions are used: the first expands from the goal set along the central
axis, and the second caps the cell. Figure 5.7 shows a schematic representation; Figure 5.9-a shows
a 3D representation of a cell with specific parameter values. The cells are naturally funnel shaped.
Free parameters govern the size of the goal set ellipsoid, overall length (ζM), and expansion along
the central axis defined by theρ (ζ, γ) function, whereζ ∈ [0, ζM] andγ ∈ [−π, π] are parameters
that specify a given point on the cell boundary surface.

Given the basic cell definition, we define two different control strategies for inducing conver-
gence to the goal. The first is the variable structure control approach described in Section 5.3.1.
The second, which works for systems whereA (q) does not depend on shape variables, is based on
a family of super quadric functions that define level sets as shown in Figure 5.8. The normal,n (g),
of the level set passing through the poseg is used to define a constraintω (g) = n (g)T A(g) on the
input space. Using anyu ∈ ω (g)−1⋂U as the control action drives the system towards the inner
level sets, and then towards the goal. The size and shape of the cell is limited by the constraint that
n (g)T A (q)

⋂U 6= ∅ for all level sets.
See Appendix E for details about the policies, discussion of correctness, and techniques used to

verify the composability requirements.

x′
θ′

ρ (ζ, γ)

g

ζM

Figure 5.7: Schematic of curves used to define super quadric based cell.

66 c© 2007 David C. Conner

g

n (g)

Figure5.8: Schematic of super quadric level sets used in control policy.

5.4 Policy Validation

For a policy to be valid, the specific policy design and specific parameter values that define cell size
and shape must satisfy the composability requirements from Chapter 3. That is, the cell that defines
the policy domain in pose space must be contained in the free pose space. The policy domain must
be conditionally invariant under the influence of a local policy that brings any pose in the cell to
its goal set in finite time; that is, the induced pose velocities cannot cause the system to exit the
cell except via the goal set, and the shape variable velocities cannot cause the system to exceed
the shape variable constraints. Furthermore, the policy domain should admit simple inclusion tests;
this requires that the cell has simple inclusion tests with respect to a local pose. The methods
used to validate the policy/cell combination necessarily vary with the specific policy design, cell
definition, and the system model under consideration. This section provides an overview of some
of the approaches used to validate specific policy instances.

First, the cell must be completely contained in the free pose space so that it is collision free. One
can imagine constructing the free pose space boundary given the size and shape of the robot body
and known work space obstacles, and then checking for intersection between the free pose space
boundary and the poses within a given cell. We avoid this complexity by inverting the problem, and
verifying that the cells are completely contained in the free pose space based only on workspace
measurements; that is, the free pose space is never explicitly defined. LetR (Ξi) denote the union
of points in workspace occupied by the robot body for all poses within a given cellΞi; that is
R (Ξi) =

⋃

g∈Ξi
R (g). In other words,R (Ξi) is the swept volume ofR (g) over all g ∈ Ξi. If

R (Ξi) does not intersect any obstacles, then the cell is free of collision; that is, the cell is contained
in the free pose space.R (Ξi) can be determined by expanding the cell boundary to account for the
body shape, and mapping the expanded surface to the workspace; see Appendix C for details and
a proof or correctness. Figure 5.9 shows an example cell, its expansion for a particular robot body
size and shape, and its mapping into the workspace. The size and shape of the cell is limited by the
obstacles in the environment.

This thesis develops a tractable approach to expanding the cell and testing for collision given
a mesh representation of the cell boundary surface. The approach uses an analytic mapping from
a cell boundary point to the corresponding point on the expanded cell boundary, and a mixture of

c© 2007 David C. Conner 67

(a) (b) (c)

Figure 5.9: Testing that cell is contained in the free pose space. a) cell, b) expanded cell that
accounts for body shape, c) projection into workspace asR (Ξi). The projection of the cell boundary
is shown as the darker inner surface.

exact tests and approximate tests to ensure the safety of a given cell without being overly conserva-
tive. First, the cell surface is represented with a surface mesh. Second, each vertex in the mesh is
expanded using the point-by-point analytic mapping. This results in a mesh of the expanded cell sur-
face, which is then projected to the workspace. For a triangular surface mesh, the projection results
in a collection of overlapping workspace triangles. If a workspace triangle vertex is contained in an
obstacle then collision occurs, and the cell is unsafe. This is an exact test, based on the point-wise
analytic mapping. If an obstacle vertex (assuming a polygonal workspace) is inside a workspace
triangle, then collision may occur, and we assume that the cell is not within the free pose space. If
all the workspace triangles and obstacle vertexes are collision free, then the cell may be free. If the
workspace obstacles are expanded by the maximum error of the expanded cell mesh approximation,
then the approach guarantees the safety of the cell. The point-by-point analytic mapping, proof of
correctness, and details about the approach to collision testing are presented in Appendix C.

A policy defined over the free space cell is safe provided the cell is also conditionally positive
invariant under the influence of the policy. Conditional invariance requires that velocities along the
cell boundary, excluding the goal set, are inward pointing. For a given policy specification, this
property must be verified.

As an example, consider a kinematic differential-drive system such thatġ = A (q)u. The
mappingA (q) does not depend on shape variables; so we will use the shorthand notationA(g) =
A (q). Let u = Φ(Ξi,U) (g) denote the chosen input of a control policy defined over a specific cell
with a specific input setU . Assume the cell boundary is defined by a surface parameterized byζ
andγ. The conditional invariance requirement is that over the entire cell boundary, that is for allζ
andγ,

n (g (ζ, γ))T A (g (ζ, γ))Φ(Ξi,U) (g (ζ, γ)) < 0 . (5.3)

For each pointg (ζ, γ) ∈ ∂Ξi define

L (ζ, γ) = n (ζ, γ)T A (g (ζ, γ))Φ(Ξi,U) (g (ζ, γ)) , (5.4)

whereU is the bounded input set associated with this policy. The more negative the value ofL, the
better the input respects the constraint given in (5.3). Although non-linear, the functionL (ζ, γ) is
piecewise smooth and generally “well-behaved” for the mappingA (q). For a valid cell, condition
(5.3) must hold over the entire boundary; therefore,L (ζ, γ) < 0 for all ζ andγ. In other words,
at each point on the cell boundary, the system must be able to generate a velocity that is inward

68 c© 2007 David C. Conner

pointing with respect to the cell boundary. In the worst case over the entire boundary, a valid cell
satisfies the constraint

max
ζ,γ

L (ζ, γ) < 0 . (5.5)

If condition (5.5) is satisfied for a given cell, under a given control policy, then the cell is condition-
ally invariant.

Figure 5.10 shows a typicalL (ζ, γ) surface for the cell shown in Figure 5.9-a. This surface is
constructed by sampling the{ζ, γ} parameter space, and calculatingL. The ridges shown in the
figure are due to switching behavior in the minimization that occurs when the cell boundary normal
is parallel to thexy-plane; that is the component in theθ direction is zero. As theθ component
of the boundary normal crosses zero, the value ofL depends only on the instantaneous heading.
On either size of the horizontal normal, theθ component changes sign; thus, the rate of turn that
minimizesL flips between positive and negative steering, which induces the ridges. As shown, this
policy results in a conditionally invariant domain.

While this example is for a specific control policy, similar approaches exist for the control
policies defined in this thesis. Appendices D and E discuss the validation approaches taken for
the specific policy designs and systems used in this thesis. The evaluation functions are piecewise
continuous, which lends itself to sample based and numeric optimization techniques for validation.
The sample based tests are exact on a point by point basis; therefore, a coarse sampling is used
for preliminary tests, and a fine resolution sampling used for final validation of a given policy
specification.

5.5 Policy Instantiation

The generic policies must be instantiated in the free pose space before they can be used in the hybrid
control framework. This involves specifying the free parameters and verifying that the composabil-
ity requirements are satisfied. The policies must then be tested for the prepares relationship with
other policies in order to construct the prepares graph used by the discrete planning. In Chapter 4,
this process was automated given a decomposition of the free workspace into polytopes; the fully
actuated idealized point systems makes this possible. In this chapter, the non-circular body shape

0
2

4

−2
0

2

−0.4

−0.2

0

ζγ

L

Figure 5.10: Constraint surface forL (ζ, γ) from (5.4).

c© 2007 David C. Conner 69

means that a simple decomposition is not available, and the constrained dynamics precludethe use
of many simple cell shapes.

Our approach for nonholonomic systems is to define the policies over cells in the pose space.
The cells must be placed so that they are completely contained within the free pose space. The
placements must also guarantee that the policy domains are sufficiently interconnected via the pre-
pares relationship to address a given navigation problem.

The approach taken in this chapter is to define some policy domains first, and then attempt to
fill the free pose space by incrementally adding policies that capture more free space and prepare
the existing policies. This section describes two approaches to addressing this challenge: a manual
approach and a semi-automated approach.

The most basic approach is to instantiate each policy individually by specifying values for its
free parameters. Given a palette of generic policies, a specific generic policy is chosen. A reference
point, typically the goal set center, is then assigned. From there, the parameters that determine
the goal set size, and cell size and shape are specified. This approach is based on trial and error.
Given a set of parameter values, the validity of the policy must be verified. This involves testing
that the cell is contained in the free pose space and demonstrating that the conditional invariance
constraints are satisfied on the cell boundary. Policy parameter values are then modified on an as
needed basis. Using MatlabTMcode developed for this thesis, the policy validation steps generally
took several minutes per policy and parameter set combination. Thus, this trial-and-error based
manual approach can be time consuming.

By taking advantage of the invariance of the policies under rigid body transformation, we de-
velop a semi-automated approach to policy instantiation. This is possible because multiple copies of
a policy can be instantiated once the conditional invariance and convergence properties are satisfied;
only collision must be checked with each transformation.

First, using the manual approach described above, we instantiate a collection of policies relative
to a common reference pose.

Definition: Cache of Policies:A collection of policies instantiated relative to a common reference
pose.

The policy cache should contain policies with a variety of domain sizes and shapes that have been
validated for conditional invariance and finite time convergence. The policies are defined relative to
a common reference pose that is not necessarily the goal set center. In this way, policies within the
cache can prepare one another. The policies within the cache are instantiated in the free pose space
by rigidly transforming them relative to the reference pose placed at a given free pose. Figure 5.11-a
shows a schematic example of a cache.

Policies from the cache are placed in the pose space relative to specific reference points. The
goal set center of each policy is transformed based on the relative transformation between the cache
reference point and the pose space reference point. Collision testing using the expanded cell ap-
proach, which is automated, is used to discard cells that intersect an obstacle. The cache should
contain a variety of cell sizes to cover small regions when the reference is near an obstacle, and
large regions when the reference point is away from an obstacle. Figure 5.11 shows a schematic
representation of the instantiation process. Given a cache of valid policies and a collection of ref-
erence poses, the instantiation within the free pose space is automated. The resulting collection of
instantiated policies is the suite of policies, first introduced in Chapter 3. In addition to policies
deployed from the cache, policies may be added to the suite manually.

By carefully defining the policy domains in the cache, and deploying the policies on a regular
grid of pose space reference points, the policies can be made to systematically prepare one another.
In this way, the instantiated policies are guaranteed to satisfy the prepares relationship in predictable

70 c© 2007 David C. Conner

(a) (b)

(c) (d)

Figure5.11: a) Cache of policies - a collection of policies instantiated relative to a common ref-
erence pose. b) The cache of policies are instantiated a given reference pose. Policy domains that
collide with obstacles are discarded, as shown by the thin light gray lines. c) Policies are instantiated
at three reference poses by copying and transforming the cached policies. d) Suite of policies - the
collection of collision free policies instantiated in the pose space of the robot. In this final example,
eight local reference poses are used.

manner. The reference pose grid spacing is chosen relative to the size of the domains in the cache.
Finer reference pose grid spacings lead to better pose space coverage because the cells can be placed
closer to obstacles without colliding; this results in more policies with significant cell overlap.
The overlapping cells can result in more options for the planning system, thereby providing more
flexibility; however, the extra flexibility comes with an increased computational burden both in the
instantiation phase as well as the planning phase.

5.6 Prepares Graph Generation

In order to do discrete planning with the suite of policies, our hybrid control approach requires the
prepares graph that encodes the discrete transitions between policy domains. Given a policy suite,

c© 2007 David C. Conner 71

this section discusses approaches to defining the prepares graph that aretractable. The approaches
can be automated, making them suitable for use with our semi-automated instantiation technique.

For kinematic systems, the prepares test is based on verifying that the configuration goal set
of one policy is contained in the domains of other policies. The policies defined in this thesis for
purely kinematic systems are defined across the range of shape variable values; thus, the prepares
test only needs to consider the pose variables. Stated differently, at any pose in a cell, the policy
is defined for any value of the shape variables. This allows the prepares test for the policies in this
thesis to be evaluated by comparing the cell goal set of one policy with the cell boundaries of other
policies. A policy prepares another policy if the cell goal set in pose space is completely contained
in the other policy’s cell; the extended prepares relationship holds for the union of cells.

The prepares tests for purely kinematic systems requires that every point in the goal set lie within
a cell or set of cells. As the cells are defined to be compact connected regions that are isomorphic
to a ball, and the boundaries of the cells are piecewise smooth functions, this can be verified by
comparing the distances from goal set points to the boundary of other cells. This section describes
three sample based approaches, and then discusses their extension to more accurate numerical ap-
proaches. For the policies defined in this thesis, the first two approaches were reliable, so the third
approach, which is more thorough, was not implemented. This section first discusses the approach
for testing one cell goal against a single cell; the extension of the techniques to sets of cells is
discussed later.

Consider testing two cells to verify whetherΦj preparesΦi. All of the prepares tests begin by
verifying thatggoalj lies within the domain ofΦi; this is a simple inclusion test thatggoalj ∈ Ξi,
whereΞi is the cell associated with policyΦi. If this single point test fails, thenΦj cannot prepare
Φi. Next, we sample the goal set boundary based on the parameterization of the specific policy
under consideration. The piecewise smooth functions allow an error bound to be determined, which
can be used to guide the sampling resolution and determine a safety threshold for the second and
third test procedures.

Given the sampling of goal set boundary points, we now discuss the three procedures used to
verify the prepares relationship between two policies. The first test procedure simply verifies that all
the sample points on the boundary ofΦj ’s goal set are included inΦi. For the relatively simple cell
shapes considered in this thesis, this test proved reliable for reasonable sample counts. The second
prepares test casts each boundary pointjgk into a local frame ofΞi along the central axis. An
example of this test is shown in Figure 5.12. Given the local coordinates ofjgk, the corresponding
point on∂Ξi is found. Provided the distance from the central axis tojgk is less than the distance
from the central axis to the corresponding point on∂Ξi, the pointjgk is in the cellΞi. The benefit of
this second test is that it provides a distance from the goal set boundary to the cell boundary, which
can allow the approach to define a safety margin. This second test can use numerical techniques to
find the minimum distance from goal set boundary to the other cell boundary. This approach does
not guard against an oddly shaped cell whose boundary bends in a way that removes a portion of
the goal set, without intersecting the goal set boundary; while unlikely, this shortcoming motivates
the third approach.

The third procedure checks to see if each point along a ray,~r
(

jgk
)

, from the goal set center
ggoalj to the sample boundary sample pointjgk lies in the cell ofΦi, as shown in Figure 5.13.

Let jℓk =
∥

∥~r
(

jgk
)∥

∥ be the distance form the goal set center to the goal set boundary point. The
approach determines the point of intersection of the ray along~r

(

jgk
)

with the boundary ofΦi; let
the distance of this point fromggoalj be iℓk. In the case of multiple intersections, the minimum
distance is chosen. Sinceggoalj is contained inΦi, the intersection will exist, so thatiℓk is well

defined. Ifjℓk < iℓk then every point on the ray is inΦi. If mink
(

iℓk − jℓk
)

> ǫ, whereǫ > 0

72 c© 2007 David C. Conner

i

j

a) Schematic view of prepares test b) Prepares test in 3D c) Prepares test in 3D - close up

Figure5.12: Prepares test for policy deployment. In the three-dimensional figures, the goal set of
Φj and the corresponding points on the surface ofΦi are traced in lighter colors.

θ′

y′ggoalj

jgk~r

iℓk
jℓk
~r
(

jgk
)

Figure5.13: Schematic of the third prepares test, wherejgk is thekth point on the goal set boundary
of policy Φj , ~r =j gk−ggoalj , andjℓk = ‖~r‖. The intersection of the ray along~r with the boundary
of Φi occurs a distanceiℓk from ggoalj .

is the safety threshold, thenΦj � Φi. This test depends on a tractable method of find the boundary
intersection with~r, which necessarily depends on the specific cell designs. Given the intersection
point, and piecewise smooth boundary surfaces, the test lends itself to numerical procedures to find
the minimum distance between the goal set boundary and∂Ξi. The specific numerical details are
beyond the scope of this thesis.

If the goal set is not contained in a single policy, a restricted version of the extended prepares
test (Φj � {Φi}) is used to test for inclusion in a set of policy domains. The restriction, which
simplifies implementation, requires that each policy in the union contains the goal set center. Then,
as long as each goal set boundary sample point passes a prepares test for at least one cell in the
union, we assume thatΦj � {Φi}, where{Φi} denotes a set of policies. When two consecutive
sample points switch between policy domains that contain them, the sampling can be refined to
guarantee that no gaps are found.

These tests for inclusion can be automated so that the prepares graph can be generated for a
given collection of cells. To limit the algorithm complexity, we chose to limit the number of cells
considered in the union to three. The automated algorithm first defines a set of possible prepared

c© 2007 David C. Conner 73

policies for a particular policyΦj asthe set of policies containing the goal set center ofΦj . For this
subset of policies, the sampled boundary points are tested for inclusion. Any policy that contains
all boundary points according to one the three test procedures is prepared by the given policy.
Next, subsets of two policies that contain all boundary points are collected; that is, the given policy
prepares the union of these policies. Finally, subsets where three policies contain all goal points
are collected. By considering all policies in the suite in turn, the prepares graph is automatically
generated. During this process a heuristic cost can be assigned to each prepares graph edge based
on some defined cost metric.

The computation cost and accuracy are related to the number of sample points along the goal
boundary. During manual deployment, a coarse sampling is used to guide the initial parameter spec-
ifications4. For final prepares graph generation, a fine sampling along the boundary is used. With
several hundred policies, the generation of the prepares graph takes hours using code developed in
MatlabTM . Suites of tens of thousands of policies sometimes took days to generate the prepares
graph; the time varied depending on the relative interconnectedness of the resulting prepares graph.
Thus, both the manual instantiation and prepares graph generation represent substantial time and
computational investments. This upfront cost is justified based on the planning flexibility demon-
strated in the next chapter.

5.7 Relative Completeness Quantification

As described above, this approach is not complete; that is, it does not guarantee that the free pose
space is covered. There is a trade-off between relative completeness and the number of policies
used for planning. Increasing the number of policies increases both the upfront computational costs
and the cost of planning and replanning. A relatively small number of simple policies is unlikely
to provide good coverage of a complicated workspace. The question then arises, “how does one
quantify the relative completeness in order to evaluate one deployment over another?” As a measure
of relative completeness, we define thecoverage fraction.

Definition: Coverage Fraction: The fraction of free pose space covered by the suite of policies.

While the definition is straight forward, calculating this in closed form is intractable using current
techniques, if not impossible in general. In this section we demonstrate an effective sample-based
method for estimating the coverage fraction, and discuss opportunities for using the coverage frac-
tion to guide policy instantiation.

The sample-based approach is based on Monte Carlo methods [91]. To begin, a regular sampling
grid is defined over theIR3 representation of pose space. The sampling grid spacing is chosen based
the relative size of the features in the world and the robot. A randomly chosen sample point is taken
from the grid and the robot is tested for collision at that pose. In order to avoid over sampling one
region, we define points on a regular grid so that each sample can be tracked and only used once.
If the robot is free of collision at the sample pose, then that pose is in the free space. The sampling
continues until a user-determined number of free pose samples is collected. This process gives a
sampling of the free pose space. From the collection of free pose samples, a smaller number is
randomly sampled and tested for inclusion in the domain of any cell in the suite of policies. The
coverage fraction is then estimated as

Cf =
included free poses

total # sampled free poses
.

4Duringmanual instantiation, the three-dimensional cells can also be visualized to provide visual confirmation of the
prepares relationship and guide parameter selection.

74 c© 2007 David C. Conner

a)θ ≈ π
2 b) θ ≈ π

Figure5.14: Plots showing the sampled points for a narrow range of orientations shown by the
robot. The dots represent free poses; lighter green represents poses included in at least one policy
and darker red represents poses that are not captured by at least one domain. The policies are
deployed on a regular 0.30 meter grid spacing in this example.

Figure 5.14 shows an example of the sampling by projecting the poses for narrow bands of orien-
tation into the workspace. Most of the missed poses appear along the boundary of the free pose
space.

For the results described in this subsection, a specific policy cache is deployed on a regular
reference pose grid using the semi-automated approach described in Section 5.5. The reference grid
points are placed at regular intervals in(x, y) as shown in Figure 5.15. The experiments consider a
square grid in(xy) and astaggeredgrid. The grids are referred by their nominal spacing,∆, along

∆

∆

a) Nominal policy reference grid(x, y) spacing

∆

∆
∆
2

b) Staggered policy reference grid(x, y) spacing

Figure 5.15: Figures show the nominal and staggered reference grid spacings used for policy instan-
tiation. These(x, y) grid points are crossed with a regular spacing along theθ dimension to make a
three-dimensional reference grid in pose space.

c© 2007 David C. Conner 75

a single row or column. The regular workspace grids are crossed with a setorientations to give a
regular reference pose grid. For the figures and tables below, the notation ‘& 45’ is used to denote
orientations of

{

−3π
4 ,−π

2 ,−π
4 , 0,

π
4 ,

π
2 ,

3π
4 π
}

; otherwise,the policy reference grids are placed at
{

−π
2 , 0,

π
2 , π

}

. During the semi-automated deployment, each policy from the cache is instantiated
at a reference pose; the policy is added to the suite if and only if the policy is collision free.

Figure 5.16 shows examples of the coverage fraction estimates for two suites of policies de-
ployed in the environment shown in Figure 5.14. The samples are chosen from a variety of sampling
grid spacings. The coarsest uses a spacing of 0.1 meters in thex andy dimensions, and5 degrees
along theθ dimension; the finest sampling grid uses .001 meters and1 degree. As Figure 5.16
shows, the coverage fraction estimate converges as the number of samples increases for a variety
of grid spacings. The figures show the mean estimates from five different samplings taken from
the collection of free pose samples taken at a given sampling resolution. The error bars indicate
wide variance for fewer samples, but show negligible variance for larger sample counts. Table 5.1
shows the standard deviations obtained for the sampling grid of 0.0025 meters and 2 degree reso-
lution sampling for ten different suites. A reasonable estimate, with less than one percent standard
deviation over the coverage fraction range, is consistently obtained after 5,000 samples.

Our expectations, which are confirmed by the experiments shown in Figure 5.17, is that increas-
ing the number of deployed policies tends to increase the coverage fraction. In the experiment, a
specific cache of policies is defined and then instantiated on regular reference grids defined in the
environment. Figure 5.17 shows the results for eight grid spacings. The first number in the Fig-
ure 5.17 legend refers to the nominal reference grid spacing in(x, y); an ‘S’ is used to denote the
staggered grid as shown in Figure 5.15-b. As the reference grid spacing decreases, more policies
are deployed and the coverage fraction increases as expected.

The increase in number of policies may be prohibitive in terms of computational cost because
many of the additional cells overlap others, without increasing the coverage fraction. This suggests

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

 Sampled Free Points

C
ov

er
ag

e
F

ra
ct

io
n

Cf ≈ 0.61

0.0025/1 spacing
0.005/2 spacing
0.01/2.5 spacing
0.025/2.5 spacing
0.05/2.5 spacing
0.1/5 spacing

10
1

10
2

10
3

10
4

10
5

a)0.30m reference grid spacing

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

 Sampled Free Points

C
ov

er
ag

e
F

ra
ct

io
n

Cf ≈ 0.81

0.0025/1 spacing
0.005/2 spacing
0.01/2.5 spacing
0.025/2.5 spacing
0.05/2.5 spacing
0.1/5 spacing

10
1

10
2

10
3

10
4

10
5

b) 0.15m & 45 reference grid spacing

Figure 5.16: Coverage fraction estimate converges as the number of sample points goes up. The
plots show a variety of pose space sampling grid resolutions for each policy reference grid spac-
ing; the legend refers to the(xy) / θ sampling grid spacings in meters and degrees respectively.
The graphs represent the mean of five sample-based estimates; error bars are shown. The results
converge to a reasonable estimate after 5,000 samples.

76 c© 2007 David C. Conner

Table 5.1: Coverage fraction and standard deviations for various policy gridsand sample counts
using 0.0025 meter and 2 degree sampling resolution.

σ2@Sample Count
Deployment Reference Grid Cf 50 500 5000 50000

0.30 0.6054 0.0627 0.0313 0.0064 0.0024
0.30 & 45 0.6359 0.0466 0.0322 0.0075 0.0021

0.30S 0.7354 0.0650 0.0217 0.0033 0.0027
0.30S & 45 0.7540 0.0637 0.0201 0.0041 0.0023

0.15 0.7976 0.0700 0.0211 0.0037 0.0017
0.15 & 45 0.8146 0.0599 0.0216 0.0035 0.0012

0.15S 0.8540 0.0480 0.0154 0.0054 0.0011
0.15S & 45 0.8669 0.0456 0.0150 0.0057 0.0010

0.075 0.8831 0.0388 0.0130 0.0047 0.0012
0.075 & 45 0.8952 0.0335 0.0137 0.0051 0.0010

0 0.5 1 1.5 2 2.5 3 3.5

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

C
ov

er
ag

e
F

ra
ct

io
n

0.30
0.30 & 45
0.30S
0.30S & 45
0.15
0.15 & 45
0.15 S
0.15S & 45
0.075
0.075 & 45
0.075S

Policy count×105

Figure5.17: Plot showing estimated coverage fraction for a number of policy grid spacings that
result in varying numbers of deployed policies.

using the coverage fraction to guide incremental deployment strategies where the policy to be added
is chosen as one that captures the most un-included poses from the sample. This greedy strategy
preferentially chooses those policies that overlap the least. This approach increases the computa-
tional burden up front in order to lower the computational burden at planning time. By decreasing
the overlap and number of policies, this greedy approach may have the unintended consequence of
reducing the flexibility of the suite during discrete planning. This is a trade off that must be eval-
uated by the system designer on a case by case basis depending on the planning scenarios under
consideration and the computational resources available.

These tests were conducted for a single cache of policies. To increase the coverage fractions, one
could also consider adjustments to the cache of policies. By including slightly larger and slightly
smaller policies, the policies can capture domains that are otherwise missed for a given policy grid.
By considering policy dominance, that is policies that completely contain the domains of other
policies in the cache, and only instantiating the policy that contains the largest (most dominate)
policy, the total number of instantiated policies can be reduced.

c© 2007 David C. Conner 77

The real test of the coverage fraction is relative to a specific navigation problem;that is, how
“global” is the hybrid control policy. Thus far, this discussion has focused on evaluating the cov-
erage fraction for a given suite of policies. For a specific navigation problem, some policies in the
suite may be discarded if they do not prepare other policies that reach the goal. The coverage frac-
tion should be evaluated for thedeployment, that is the suite of policies and the switching strategy,
for the navigation problems being considered. Providing more policies, with more interconnections
in the prepares graph, increases the likelihood that a policy will be included in the deployment, at a
cost of increased computation up front and during planning.

5.8 Conclusion

This chapter provides an overview of our approach to extending policy composition techniques to
single-bodied wheeled mobile robots. After discussing the modeling framework for purely kine-
matic system, the chapter presents a policy design approach based on defining cells in the free pose
space, and feedback control policies over those cells. Two specific families of generic policies
that follow this approach are introduced. The chapter discussed techniques for validating specific
instances of the generic policies, and verifying that the policies satisfy the composability require-
ments of Chapter 3. The cells have explicit boundaries in the pose space, which allows the safety of
the policies to be guaranteed provided the cells are complete contained in the free pose space, and
the associated control policy renders the cell conditionally invariant. The chapter introduces a novel
approach to verifying that the cell are collision free based purely on workspace measurements, in
a way that does not require the construction of the free pose space boundaries. The policies have
simple inclusion tests by design.

Approaches to policy instantiation and prepares graph generation are discussed. The chapter
introduces a semi-automated approach to policy instantiation based on a collection of policies in a
cache. The cache policies are specified manually, and validated for conditional invariance and finite
time convergence. The semi-automated approach takes policies from the cache and places the cells
at specific reference poses via a rigid body transformation. The invariance properties of the policies
guarantee that the transformed policies retain the conditional invariance and finite time convergence
properties. The transformed policies are tested for collision using the expanded cell approach in-
troduced in this chapter; only collision free policies are retained in the policy suite. Given the suite
policies, this chapter introduced three procedures for determining the prepares relationship among
policies in the suite. The policy instantiation and prepares graph generation processes incur an up-
front cost; the upfront cost is offset by the planning flexibility of this hybrid control approach, which
is demonstrated in the next chapter.

Finally, this chapter introduced a sample based method for evaluating the relative completeness
of the suite of of policies. The results demonstrate that the sample based approach converges to a
reasonable estimate of the coverage fraction; that is, the portion of free pose space covered by the
instantiated policies.

Given these policies and validation tools, it is feasible to deploy composable policies for wheeled
mobile robots in a way that enables symbolic planning on these constrained systems. The next chap-
ter explores various planning techniques in simulation and experiment on real mobile robots using
policy suites defined using these techniques.

78 c© 2007 David C. Conner

79

Chapter 6

Demonstrations of Coupled Planning and Control

This chapter demonstrates the coupled planning and control approaches advocated in this thesis;
experiments and simulations of several different robot models validate the approaches discussed
in Chapter 3. The experiments are designed to demonstrate the sequence-based, order-based, and
automata-based planning approaches using the policies developed in Chapter 5. The approach is
applied to real systems that exhibit the imperfections and model uncertainty of real world applica-
tions, operating in confined environments. The results demonstrate that the composition of simple
policies allows more complex behaviors to emerge; unlike other behavior-based approaches [19],
these emergent behaviors are guaranteed to induced the desire global behavior. The experiments
also exhibit the robustness of feedback control to model uncertainty and disturbances. In spite of
the overall success, several issues arise during the testing. We discuss these issues, how they im-
pact the relative strengths and weaknesses of the different approaches, and present our methods of
addressing the issues.

The chapter is divided into sections based on the planning methods used in the demonstration.
First, order-based approaches to building a global policy are discussed. Here the task is navigation
to an overall goal using an ordering of the instantiated policies. Experiments using both SQ and
PF policy types, and two different robot models are presented. Next, the sequence-based approach
that uses model checking to satisfy temporal constraints is discussed. A sequence of policies is
generated such that the composition of the policies in sequence moves the robot through a series of
tasks. Simulations of one particular robot model are given, and the limitations of the sequence-based
approach on a real robot are discussed. Finally, we present examples using automata synthesis to
build formally correct reactive hybrid control policies. Results from both real robots and simulations
are given. The robots demonstrate navigation tasks that change based on different sensed inputs;
that is, the robots react to changes in their environment.

6.1 Order-based Planning

The first tests follow the conventional sequential composition approach by using an ordering of the
suite of policies to address a single navigation and control task. Here, the attempt is to build a near
global control policy using the instantiated local policies. The basic task is to navigate through an
environment without collision to a designated goal; the goal is chosen to correspond to the goal
set of a policy in the suite. This section presents scenarios for two different robot/environment
combinations; several initial conditions are shown for each environment.

Each scenario is set up as follows. First, we assume the environment is fully known. The control
policies are instantiated using the generic policies defined in Chapter 5; MatlabTMcode developed
for this thesis is used to test requirements for composable policies. The policies are verified for

the particular robot model and input set; collision is tested based on the workspacemodel. We
then determine the prepares graph using code that implements the ideas discussed in Chapter 5.
Heuristic costs are assigned to each edge based on a cost function related to the size and complexity
of the given policy transition. The deployments are verified in simulation prior testing on the robot.
Afterwards, a list of policies with their assigned parameter values is written to a text configuration
file; another configuration file defines the control input bounds used for the particular robot. The
policies are then transferred to the robot for execution.

The robot control is governed by a softwareexecutiveprogram that coordinates the pose estima-
tion, policy switching, and motor control output. The executive, developed for this thesis, is written
in C++. During execution, the control inputs specified by the local policy are sent to a low-level
motor controller. The policy control input is specified as a forward velocity and rate of turn, which is
mapped to desired wheel velocities. A low-level motor controller attempts to move the drive wheels
according to the velocity command by specifying voltages to the motor. As this control is never
perfect, and is subject to delay, error, and second-order dynamics, the actual robot is an imperfect
match to the kinematic model assumed in the policy design. Appendix F discusses the particulars
and limitations of the particular robot models used in these experiments in more detail.

During the robot startup, the robot software executive first reads the suite of policies from the
configuration file, along with the specified control input bounds appropriate for the given robot. The
goal, which is assigned according to the particular navigation task, is specified as a particular policy.
The executive then uses D*-lite [81] to order the policies according to the assigned heuristic costs;
the entire prepares graph is ordered.

The output of this D*-lite implementation is a switching strategy, which we represent with a
finite automaton. Each node is assigned a cumulative cost to the goal and a preferred action. The
automaton is tree-like; that is, there are no cycles. During the experiments, the policies are executed
using the finite automaton model to provide faster execution time due to fewer inclusion tests, as
discussed in Chapter 3. The ordering is also stored as a totally-ordered list of nodes according to the
cumulative costs assigned to each node in the automaton. This list is for recovery after perturbations.
After D*-lite is finished with the initial ordering, the robot executive searches the ordered list until
a node whose policy that contains the initial pose is found. If the search fails to identify a valid
policy, that is an ordered node with finite cost, then execution terminates.

The robot executive program executes the hybrid controller based on the finite automaton. The
current automaton node is stored during execution. The executive accepts the current local pose
estimate, and checks if the current pose estimate is contained in the domain of the policy associated
with a child node of the current node1. That is, the policy associated with the child node of the
current node in the automaton. If the child policy domain contains the current pose estimate, then
the child node becomes the current node and the associated policy is executed. Otherwise, the
current local pose is tested against the current policy domain, and the current policy is executed
if its domain still contains the current local pose estimate. If a disturbance takes the current pose
estimate outside the current domain, a zero velocity command is sent to the motor controller, and
the executive begins a total order search using the ordered list. If the search fails to identify a node
associated with a valid local policy, then execution terminates; otherwise, the newly identified node
becomes the current node, and the policy execution continues. This approach allows the robot to
recover from unexpected perturbations, while preserving the speed of the local search in the finite
automaton representation.

1Recallfrom Chapter 3 that we make a distinction between the nodes of the automaton used to represent the switching
strategy, and the policies associated with each node.

80 c© 2007 David C. Conner

6.1.1 ‘Deminer’ Robot Experiments

Thefirst experiments use the ‘Deminer’ robot shown in Figure 6.1. The robot is a standard differential-
drive robot with a convex, roughly elliptical body shape. The control inputs are taken from one of
four bounded input sets,Ui, as shown in Figure 6.2; each local policy is associated with one partic-
ular input set. See Appendix F for details about the robot size, shape, and the input sets.

For these experiments, a total of 288 basic SQ type policies described in Appendix E are manu-
ally instantiated using the techniques described in Chapter 5. During the instantiation process, each
set of policy parameter values is checked for validity for the particular input set assigned to the pol-
icy; that is, the composability properties are verified and the parameter values adjusted as necessary.
Figure 6.3 shows the domains for seven policies. It is worth noting that the manual instantiation
process is time consuming, especially around sharp turns which required much trial and error to
get policies that appropriately prepare one another. The extended prepares definition is used most
often near the corners of obstacles to allow larger policy domains to be deployed. For this suite of
policies, fifteen separate policies prepare 31 different unions of policy domains, which introduces
indeterminacy into the discrete prepares graph as discussed in Chapter 3.

For these demonstrations, the Deminer robot operates among a set of polygonal obstacles that
define the ten meter by ten meter world. Figure 6.4 shows the projection of all 288 instantiated

Figure 6.1: ‘Deminer’ laboratory robot

−0.4 −0.2 0 0.2 0.4 0.6
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

v meters/s

ω
ra

di
an

s/
s

Aggressive
Cautious
Reverse Aggressive
Reverse Cautious

Figure 6.2: Four sets of bounded steering inputs used in Deminer experiments. .

c© 2007 David C. Conner 81

a) Projection of cells into workspace with obstacles b) Representation of cells in three-dimensional pose space

Figure6.3: Detail of seven cells in environment.

policies into this workspace. The world includes several narrow corridors and openings, with the
narrow corridors measuring approximately one meter. This provides a clearance of approximately
16 centimeters on either side of the robot, but prevents the robot from being able to turn around
within the corridor. The policy domains projected into Figure 6.4 appear to be away from the
obstacles; however, the expanded cells that account for body shape are much closer to the obstacles.
The expanded cells are not shown in Figure 6.4, but an example is shown in Figure 5.9. Figure 6.5
shows a representation of these 288 policy domains in the three-dimensional pose space.

The designated navigation task is specified as bringing the robot to the middle of the lower
corridor. This navigation goal corresponds to the goal set of particular local policy, which is chosen
as the goal of the ordering. D*-lite is used to generate the ordering of the prepares graph associated
with the suite shown in Figure 6.4. After the system state passes through the local goal set of this
designated goal policy, the execution is halted.

A total of 12 different experiments were conducted on the actual robot. These experiments are
based on dead-reckoning position estimates. As a result of dead-reckoning error, inherent in all
wheeled-mobile robots, the robot would have crashed into some obstacles had they been physically
present. Therefore, we ran the robot in an open space, but used the policies that consider the
obstacles shown in Figure 6.4. In this mode, the robot “hallucinates” the obstacles. With this dead-
reckoned position estimate, all 12 experiments ran to completion providing a proof of concept, and
demonstrating the reliability of the approach. Seven representative results from unique initial poses
are presented below; the remaining five tests duplicated some initial poses, with similar results.

82 c© 2007 David C. Conner

Figure 6.4: Projection of 288 cells into the workspace.

Figure 6.5: Complete suite of 288 cells in three-dimensional pose space.

c© 2007David C. Conner 83

Figure 6.6 shows four paths that start from four different initial conditions,but converge to the
same goal. The paths are shown on the same plot to underline the global nature of the resultant
hybrid control policy. It is worth emphasizing that the paths shown are plotted from dead-reckoned
estimates of body position and orientation from an actual robot run. The induced paths are the result
of policy switching according to the ordering defined by D*-lite using the prepares graph for the suit
of policies shown in Figure 6.4; an explicit desired path is never calculated. The paths are labeled
(#1 - 4) clockwise from the lower left.

The paths labeled #5 and #6 in Figure 6.7 demonstrate the flexibility of planning in the space of
control policies. Path #5 begins near the same position as path #1 (shown in Figure 6.6); however,
the orientation is approximately 180 degrees different. The composition of local policies enables
the robot to back up, stop, and then move forward to the goal without colliding with an obstacle.
This is because the policy suite also includes policies that allow the robot to go in reverse. The
policy switching between forward and reverse is automatic given the particular ordering, with no
operator intervention. To avoid damaging the real robot, the system is required to come to a stop
before switching between a forward and reverse policy. Similarly, path #6 demonstrates a more
complex K-turn induced by the composition of the simple SQ policies shown in Figure 6.4. The

Figure 6.6: Four experimental runs demonstrate the “global” nature of the hybridcontrol policy
induced by the ordering of the policies; only the initial conditions vary. The projection of the
individual policy domains are shown in light gray. The actual data is plotted at 0.1 second intervals;
robot symbols are drawn for every five seconds of travel time.

84 c© 2007 David C. Conner

Figure 6.7: Two additional runs using the same ordering. Run #5, which startsat the same position
as Run #1 but oriented 180 degrees apart, automatically backs out of the narrow corridor, and then
switches to forward motion. Run #6 demonstrates a complex K-turn maneuver to get around a sharp
corner. The behavior is automatically induced by the composition of local policies.

policy suite does not include policies that are expressive enough to turn the lower right corner in
one continuous motion. While this points to the limitations of this particular suite of policies, it
validates the basic approach. The combination of simple policies with discrete planning is still
capable of generating expressive motions; thereby demonstrating the flexibility of planning in the
space of control policies.

A second advantage of planning in the space of control policies is the ability to do fast planning
and re-planning. In this case, the planning is over a prepares graph with only 288 nodes. Figure 6.8
shows path #7, which starts near the initial condition of path #6. Path #7 begins to converge to
path #6,which is shown as a dotted line; however, just after the K-turn the two policies crossing the
circular obstacle shown in Figure 6.8 are flagged as invalid. This triggers a re-planning step using
D*-lite that reorders the policies, thereby inducing the robot to take “the long way around” via path
#7. This re-planning occurs in real time, while the hybrid control policy is executing on the robot.

This experiment served as an early proof of concept. The experiment demonstrates using simple
local feedback control policies to induce a global behavior on a single-body nonholonomically
constrained robot. Planning and re-planning on the prepares graph carries low overhead. The policy

c© 2007 David C. Conner 85

Figure 6.8: Paths #6 and #7 diverge in response to two policies that are invalidatedduring run #7;
D*-lite efficiently re-orders the policies during the run as additional information is gathered. The
dark circle represents a new obstacle that invalidates certain policies.

composition induced by the hybrid control policy allows complex behaviors to emerge in a provably
correct manner through the policy ordering.

86 c© 2007 David C. Conner

6.1.2 ‘LAGR’ Robot Experiments

The previous experiments did not have integrated localization, which limits their practical value.
Using pure dead reckoning makes the experiment too much like a simulation, as the hybrid con-
trol system is not subject to disturbances due to localization error and correction. To address this
shortcoming, a second set of order-based experiments uses a robot equipped with an integrated
vision-based localization system. This allows the hybrid control approach developed in this thesis
to be evaluated in an integrated system.

In the next set of experiments, we use the ‘LAGR’ robot shown in Figure 6.9 because it has four
pairs of stereo cameras to perform vision based localization relative to known landmarks placed in
the environment; the landmarks are color coded as shown in Figure 6.9. The localization system
uses an extended Kalman filter to update the pose estimate based on measurements of range and
bearing to the identified landmarks. The system is now subject to disturbances based on jumps in
the pose estimate as new landmarks come into view.

In addition to the different robot, these experiments are carried out in a different environment
with a different policy suite, which uses PF style control policies. The PF policies are more natural
for specifying motion around tight corners than the SQ policies used in the Deminer experiments.
This is because the PF policies can be deployed relative to an arc in workspace, where the SQ
policies had a straight central axis. Figure 6.9 shows the LAGR robot successfully navigating a
particularly tight spot under closed loop control.

Instead of the manual instantiation approach taken with the previous experiments, these PF
policies are instantiated using the cache and reference point approach discussed in Chapter 5. A
total of 313 policies are systematically defined in the cache; 156 forward, 156 reverse, and one
special ‘Halt’. These policies include various widths, lengths, and arc radii. Each policy in the
cache is associated with a one of thirteen bounded input sets; the inputs for each policy are taken
from its associated input set. See Appendix F for specific details about the input sets. The input
sets include sets for straight PF policies and arc based PF policies. Both forward and reverse sets
are associated with each group, as are aggressive and cautious sets. The sets for straight policies

Figure 6.9: ‘LAGR’ robot navigating a corridor. Three color-coded landmarks,which are used by
the vision based localization system, are visible in the image.

c© 2007 David C. Conner 87

allow less aggressive steering, while those for tight turns use a cautious forward speed and more
aggressive steering. By matching the input set to a particular policy, the feedback is tuned to the
local conditions. Even though the robot is capable of zero-radius turns, the input sets are constrained
to excludes zero-radius turns; this approximates the behavior of more constrained systems such as
cars, and provides a greater challenge to the hybrid control approach.

In the demonstrations here, the robot maneuvers about a hallway with long thin corridors; there-
fore, it makes sense to instantiate the policies in “lanes.” That is, the policies are instantiated in
straight lines running the length of the hallways; the lines of policies are analogous to lanes on a
highway.

To further simplify policy instantiation and planning, some local policies are grouped into meta-
policies. Figure 6.10 shows a meta-policy associated with taking the system from one of three
lanes entering from the right and moving the system to the top most lane exiting to the left. The
meta-policy defines an order-based switching strategy between its component policies, which are
defined with respect to a common reference point. A meta-policy is instantiated by instantiating
its component policies relative to its reference point; the meta-policy can only be instantiated if all
of its component policies are collision free relative to a specified reference point in the free pose
space. Figure 6.11 shows the component policies to scale, along with the expanded cells defined by
the robot body size and shape.

While the component policies could be instantiated individually to accomplish the same task,
meta-policies simplify the deployment by grouping similar behaviors. For planning purposes, the
meta-policy is treated as a single node in the prepares graph. Furthermore, the meta-policies can
allow manual verification of the prepares relationships. This can allow policies that cover the goal
set, but do not all contain the goal set center, to be prepared as a group; this removes the restric-
tions of Section 5.6 for automated verification. By design, the meta-policies only allow designated
component policies to be prepared. This affords the designer more control over the meta-policy

Figure 6.10: An example meta-policy that uses five PF style policies to move three lanescoming
from the right into a single lane exiting to the left. The policies are shown projected into workspace.
To enhance the detail, the figures axes are not equal.

88 c© 2007 David C. Conner

a) Meta-policy projected into workspace b) Expanded meta-policy showing body extent in workspace

Figure 6.11: Example meta-policy used for LAGR experiments. The meta-policy domains are
shown relative to obstacles in the environment in the proper scale. The figure on the right shows the
body extent into the workspace for this meta policy. Three robots are shown at various poses on the
cell boundaries; the robots use a bounding polygon for calculating the body extent.

behavior by allowing normally unused component policies to be added for robustness, without in-
cluding them in the prepares graph used for planning. These component policies can only be active
after the meta-policy becomes active.

Several meta-policies are defined based on needed motion in the hallways. In addition to the
“lane change right” meta-policy, meta-policies for “lane change middle” and “lane change left” are
defined. Given the narrowness of the hallways, only three lanes spaced 0.1 meters apart are defined
in most corridors. The lanes are defined in the forward direction along the length of the corridor.

Several meta-policies associated with turning corners are defined, including both “left turn” and
“right turn”. Figure 6.12 shows an example left turn. The turn meta-policies include simple arcs
of various radii to blend three lanes into one orthogonal lane. To improve robustness, the turning

Figure 6.12: Meta-policy used to turn 3 lanes left.

c© 2007David C. Conner 89

policies include both short radius turns and longer radius turns. The long radiusarcs blend with the
short radius turns to provide a transition from straight motion to turning motions.

Many of the hallways were so narrow that a simple arc could not navigate the hallways; there-
fore, two different meta-policies induce K-turn motions in the narrow hallways. Figure 6.13 shows
actual data from a K-turn executed by the robot during an experiment. In this case, the behavior
is encoded in the meta-policy by design, where the behavior emerged as a consequence of discrete
planning in the Deminer experiments.

The meta-policies are implemented in a modular fashion that makes the planning and execution
transparent to the robot executive. When testing for inclusion before becoming active, the meta-
policy only tests those component policies designated as inlets for the prepares definition. Once
the meta-policy becomes active, all component policies are tested using the internal ordering; that
is, the inclusion test resorts to a total order search over component policies if necessary once the
current node is associated with the meta-policy. This approach provides robustness to the meta-
policy, while given the designer control over when the meta-policy is allowed to become active
initially.

The lane change meta-policies are instantiated at regular intervals along evenly spaced lanes in
the corridors. The component policies in the lane-change meta-policies are associated with input
sets that have positive forward velocity. Turn and K-turn meta-policies are instantiated in a way
that they are prepared and prepare the basic lane policies at the appropriate junctions. In addition to
the meta-policies, a few 180 degree arcs are used in the larger central hallway to allow continuous
turns. By design, according to the instantiated policies, the robot is only allowed to reverse motion
in certain spots through the use of a K-turn maneuver or 180 degree arc in the central corridor.
Otherwise, the robot must travel in a loop.

Two additional meta-policies are defined to navigate a small “nook”; Figure 6.9 shows the robot
navigating this nook. When the robot is in the nook, it is halted by a special policy that is prepared
by the incoming meta-policy; the halt policy prepares a meta-policy that exits the nook.

The use of meta-policies reduces the total number of nodes in the prepares graph that is used
for planning. In this case, a total of 309 meta-policies and 86 individual policies are deployed in
the environment. Thus, the prepares graph used for planning has only 395 nodes, compared to the
grand total of 2846 PF policies that are instantiated in the environment. The grand total includes
both individual and meta-policy components. The policy suite includes 3155 policies, the 2846 PF
policies and 309 meta-policies.

The robot software executive functions the same as with the Deminer experiments. The plan-
ning takes place over the 395 nodes in the prepares graph. During execution, when a meta-policy
becomes active, it is treated as a switched hybrid control policy in its own right; the component
policies are activated according to the meta-policies local ordering. On the executive level, the
meta-policy remains active until the state enters the domain of a child node of the ordering, or exits
the domain of all policies in the meta-policy’s collection of component policies.

a) Approaching K-turn b) Executing reverse motion b) Departing K-turn

Figure6.13: Plot of data from actual robot experiment as the robot executes a K-turn in the upper
hallway. The K-turn is automatically induced by the composition of policies based on simple arcs
and straight path segments.

90 c© 2007 David C. Conner

Figure 6.14 shows the results of executing the hybrid control policy induced bythe ordering of
the policies. The meta-policy corresponding to stopping in the small nook was chosen as the goal.
The figure shows eleven different runs from five different initial conditions. In most cases, the curves
overlap and are indistinguishable, which shows the repeatability of the performance. Figure 6.15
shows the individual runs. Figure 6.16 shows a close up of the final configuration in the nook; the
eleven overlapping robots closely match one another, which demonstrates the repeatability of the
closed loop system.

During execution, five of the eleven runs experienced disturbances that took the system pose
estimate outside the domain of the current policy. In these cases, the total order was searched, a
valid policy was found, and the robot continued to the goal.

To demonstrate re-planning during execution, two additional runs are shown in Figure 6.17.
During execution 24 policies that pass through the lower corridor are invalidated, which triggers a
re-planning step using D*-lite. During the initial planning stage, the D*-lite takes approximately
0.050 seconds to order the 395 nodes of the prepares graph. The D*-lite re-planning step required
only 0.018 seconds; this compares favorably with the 0.01 second loop time for the robot executive
function. During these re-planned runs, the executive needed to search the total order twice per run.
These searches were required near the K-turn in the lower left corridor, as disturbances allowed the
robot to exit the policy domains due to the aggressive turning that is required.

Figure 6.14: ‘LAGR’ robot navigating corridors using a ordering of instantiatedpolicies. Eleven
different runs, from five different initial conditions, converge to the designated goal set. The five
lighter green robots mark the initial conditions; the darker blue robot marks the goal. The corridors
shown represent an approximately 29 m x 27 m portion of Carnegie Mellon’s Newell-Simon Hall
A-level.

c© 2007 David C. Conner 91

a) b) c)

d) e) f)

g) h) i)

j) k)

Figure6.15: Details of eleven runs using the ‘LAGR’ robot navigating with the same ordering of
instantiated policies.

92 c© 2007 David C. Conner

Figure 6.16: A close-up of the final poses. This figure shows the results from11 runs; the closely
overlapping robots show the repeatability of the performance, even after long runs.

a) Run given original information b) Two runs after re-planning.

Figure 6.17: D*-lite is used to re-order the policies after policies traversing the lower corridor
are invalidated by an obstacle. The alternate route executes a ‘K-turn’ in the lower corner, as the
system cannot turn around in the hallway using the policies in the cache. These figures show an
approximately 19m x 19m square of the corridors.

c© 2007 David C. Conner 93

In addition to the thirteen successful runs, four experiments ended in failurewhen the pose
estimate exited the domains of all policies in the deployment. Two of these four failure were during
execution of the K-turn during re-planning experiments. That is the disturbances encountered during
the aggressive turns were significant enough to take the system outside the domains of all policies
in the deployment.

These are failures in the sense that the robot ceases execution, and cannot recover with the
existing suite of policies, but not in the sense of crashes or incorrect behavior. The safety of the
approach is preserved, as the robot halts execution and comes to rest safely as soon as the pose esti-
mate exits the domain. These four experiments do not invalidate the hybrid control approach; rather
they demonstrate the inherent safety encoded in the explicit domains. The approach automatically
recognizes when the system is outside a valid domain, and is able to halt execution. In most cases,
these failures could be avoided by deploying more policies in the environment, and increasing the
coverage fraction of the policy suite.

There are two main causes of these failures where the system exited the domain unexpectedly,
and thus violated the conditional invariance of the local policies. The first relates to the localization
system; as new landmarks come into view, the pose estimate occasionally changes faster than the
robot can respond. This occurs relatively infrequent, as evidenced by the many long successful runs.

The second contributing factor is errors in commanded velocities. The LAGR robot, while
appropriately designed for its intended function of outdoor navigation, lacks sufficient control res-
olution for fine positioning in relatively narrow environments that necessarily have thin policy
domains due to the size of the robot. Its velocity control is not sufficiently responsive mainly due to
limited encoder resolution, which causes noisy velocity signals and limits the control gains that can
be applied, and to large disturbance forces due to the caster wheels. During aggressive turns, the
combination of localization update changes and velocity controller error allows the system to exit
the policy domain because the actual velocities do not match the commanded velocities, in viola-
tion of the kinematic assumption of policy design. Again, the hybrid control approach with explicit
policy domains defined by the cells, recognizes that the pose is entering an unsafe region, and halts
execution.

Another potential source of failure is unwanted limit cycle behavior, which occurs when a dis-
turbance takes the system outside the domain of one policy, but the state is captured by the domain
of a lower priority policy. This violates the assumption of monotonic switching assumed by the
order-based approach [21]. For limited disturbances, this is not a problem. If the disturbance occurs
repeatedly, the executive can become trapped in a cycle between the same policies and fail to make
progress towards the goal. This failure was observed during some preliminary experiments, mainly
near the aggressive K-turn. The most likely cause is jumps in the pose estimates as landmarks come
in and out of view. In general, the localization is relatively consistent; however, jumps of several
centimeters have been observed. This failure has not been observed since some additional policies
were added to the K-turn meta-policy before the final experiments.

In spite of the limitations of the LAGR robot, the order-based hybrid control policy robustly
addressed the coupled navigation and control problem in most cases. The few failures could have
been addressed by adding more policies to the suite of local policies in order to capture more of
the free pose space. For single navigation tasks, the order-based approach to generating a hybrid
control policy proves reliable.

94 c© 2007 David C. Conner

6.2 Model Checking-Based Sequence Planning

While the order-based approach allows a single task to be addressed, the approach does not handle
multiple tasks that depend on temporal constraints. One might imagine specifying a sequence of
sub-goals, and then reordering the policies for each sub-goal in turn. In this mode, a higher-level
control would switch between hybrid control policies. While not infeasible, care must be taken to
guarantee that each sub-goal is reachable from the previous. Furthermore, this requires the sub-
goals, and their ordering to be defined prior to the policy orderings, which may lead to unrealizable
sub-goals.

In this section we explore an alternative approach that automatically specifies this high-level
“program” by specifying a sequence of policies that satisfy some specification. The approach is
based on model checking, which is used to define a sequence of policies whose invocation will
cause the system to satisfy a high-level specification [36, 37] . The planning occurs in the space of
instantiated control policies using the prepares graph. The approach automatically checks that the
specification is realizable, and automatically generates sub-goals as required.

To demonstrate the utility of this approach, a multiple-task scenario is simulated using the robot,
obstacle environment, and policy deployment described in Section 6.1.1. The scenario is modeled
on a mail delivery robot operating in an office environment. The robot, which begins in a given
region, is tasked with picking up a package at a designated region, and dropping the package off
at the mail-room. The robot is also tasked with picking up two packages at the mail-room, and
delivering them to two separate locations. The robot is to finish at a designated region.

Each pickup or delivery point is associated with the goal set of a specific policy. Using the one
or two-letter alphabetic labeling of the local policies, the specification may be given as

• Start in location BT; that is start within the domain ofΦBT

• Pickup (visit) at either DE or FO, then deliver to GO (mail-room); that is, first go to either
G (ΦDE) or G (ΦFO), and then go toG (ΦGO).

Note, policies DE and FO have goal sets in approximately the same workspace position, but
the goal sets are 180 degrees apart in orientation.

• Pickup GO (mail-room), then deliver (visit) CR; that is, fromD(ΦGO) go toG (ΦCR).

• After CR, deliver to CF; that is, afterG (ΦCR) go toG (ΦCF).

• Avoid BA, BB, BH, and HI; that is policiesΦBA, ΦBB, ΦBH, andΦHI are invalid.

• Finish in location A; that is at the goal set ofΦA.

The plan must generate motion that navigates between the regions BT and A in a way that satisfies
the other specifications.

Given an LTL encoding of this temporal specification and the prepares graph, model checking
techniques are used to generate an open loop sequence of policies that satisfy the specification2 [36,
37]. The policies are executed in the same framework as the order-based approaches by encoding
the sequence of policies as a tree where each node has a single child3. The key difference is that now
the order must be maintained; the system cannot recover from a perturbation by searching the tree
as an ordered list. This is because multiple nodes in the sequence may map to the same continuous

2Many thanks to Hadas Kress-Gazit at UPenn for assistance in encoding the specification and executing the planner.
3The model checking-based approach used here does not allow non-deterministic transitions; therefore, transitions

that depend upon the extended prepares relationship are eliminated from the prepares graph before planning.

c© 2007 David C. Conner 95

policy. The ordering of policies is critical; in the event of a disturbance, the sequencemust be re-
planned with knowledge of what sub-goals have already been satisfied so that the specification can
be modified accordingly.

Given an initial position and orientation of the robot that lies within the domain of policy BT,
executing the policies according to the given sequence satisfies the specification. Given the prepares
graph and specification, the model checking procedure guarantees the result by construction. In this
case, executing the sequence will first take the robot to either DE or FO, and then to GO, after
reaching GO, the system reverses course and visits CR, and then CF, until finally reaching the goal
at A. All the while, the system never executes policies BA, BB, BH, or HI. The simulation of this
plan is shown in Figure 6.18-a. Alternately, we can change the specification so that instead of
avoiding the regions (BA, BB, BH, and HI), we visit either BB or BH. The results of this later result
is shown in Figure 6.18-b.

This task level planning worked well in simulation, but limited attempts to execute the plans on
the Deminer robot exposed some limitations. All runs ended in failure when a perturbation took the
robot outside the domain of one of the policies in the open loop sequence. For the Deminer robots,
these perturbations tended to be small as the localization was based on dead reckoning, and did not
suffer jumps in pose estimates. The perturbations were mainly due to velocity control lag and caster
wheel drag. In spite of the perturbations being small, the robot exited the domains of some local
policies, primarily because the model checking-based planner chose some policies with relatively
small domains.

These policies with small domains were chosen for two reasons. First, the model checking-
based approach does not consider heuristic costs. In the order-based approach, policies with small
domains are assigned relatively high transition costs, which means they are not high priority, and
are only invoked if necessary. Second, the model checking-based approach does not consider non-
deterministic transitions. Therefore, all policies that depend on the extended prepares relationship
are invalid. Around tight turns, only relatively small domains remain valid. One approach to ad-
dressing this issue, is to use meta-policies with the extended prepares relationship and do model

−5 0 5
−5

0

5

BT

DE

GO

CF

CR

A

BA

BB

BHHI

x (meters)

y
(m

et
er

s)

a) Path #1

−5 0 5
−5

0

5

BT

DE

GO

CF

CR

A

BB

BH

x (meters)

y
(m

et
er

s)

b) Path #2

Figure 6.18: Simulation of open loop policy sequences derived from temporal logic specifications.

96 c© 2007 David C. Conner

checking on the meta-policy level. Fundamentally, the open-loop sequences losethe robustness in-
herent in the order-based approach because not all policies are considered; this limits the domain of
the resulting hybrid control policy.

The model checking based approach is also rigid in the sense that it does not allow the system
to react to changes in the environment without re-planning. To allow more flexible approaches that
can react to changes, Kress-Gazitet al. [68] have developed an approach that uses the prepares
graph defined by our approach to generate an automata that reacts to discrete sensor inputs.

6.3 Automata-based Planning

Like sequence-based approaches, automata-based switching strategies are capable of addressing
multiple tasks; however, automata have the added advantage of changing behaviors during runtime
based on gathered information without requiring re-planning. Combining the policy composition
approach advocated in this thesis with automaton synthesis tools such as those of [68] enables a
constructive approach to building a hybrid control policy whose continuous execution satisfies high
level specifications, while enabling the constrained system to react to environmental changes.

This section presents several experiments and simulations using the synthesis approach given
in [68]. As discussed in Chapter 4, [68] uses a disjoint workspace decomposition and adjacency
graph to choose policies based on our fully actuated policies for idealized systems. In contrast, this
section defines the specifications and automata synthesis in terms of the prepares graph. This ap-
proach is more flexible because it can be applied to constrained systems, and allows for overlapping
policy domains.

The section presents two examples. The first uses the LAGR robot and policies from Sec-
tion 6.1.2; both simulations and experiments are discussed. The second demonstration uses PF
policies with an Ackermann steered vehicle to demonstrate complex traffic behaviors in simulation.
The latter presentation includes a discussion of using this approach as the basis for a decentralized
multi-agent control system.

6.3.1 ‘LAGR’ Robot Experiments

The first example is termed the “timid night watchman.” The LAGR robot is tasked with patrolling
office corridors by visiting four checkpoints in turn. If an intruder is detected, as indicated by a
binary sensor called ‘Intruder’, the robot is to “run and hide” in the small nook near the workspace
center; after the intruder is gone, the robot should resume patrolling. The system also includes a
‘Hazard’ input; upon sensing a hazard, the robot should stop in place. The robot resumes motion
when the hazard is clear. The robot has three outputs: ‘Stop’, which indicates that the robot should
cease executing its local policy and stop in place, ‘CheckPoint’, which means the robot is at a
designated checkpoint, andΦi, which encodes which policy is associated with the automaton node.

The desired behavior is encoded in linear temporal logic (LTL) and input to the automaton syn-
thesis algorithm developed by [68]. The algorithm takes the initial conditions, transition relations,
and goals, then checks whether the specification is realizable. A specification isrealizableif an
automaton that specifies valid transitions can be synthesized given the LTL inputs. If the specifi-
cation is realizable, the algorithm extracts a possible, but not necessarily unique, automaton that
implements a strategy that the system should follow in order to satisfy the desired behavior.

Using the specific “timid night watchman” task, the behaviors are encoded as follows. The
Hazard input is initiallyFalse, and there are no other assumptions about the environment so both
its transitions and goals are set toTrue. The Intruder input is allowed to be eitherTrue or False.

c© 2007 David C. Conner 97

The system state is assumed to be in one of two initial policy domains, the initial policies arenot
checkpoints, and the system is not stopped by hazard. The system transitions include knowledge
of the prepares graph. The system stops if and only if there is a hazard sensed. The system also
encodes that the current policy reference does not change if the system stops. If an intruder is
sensed, and the system is hidden in the nook, the system should stay in the nook. The system should
always patrol if the intruder is not sensed. The CheckPoint output is set if and only if the robot is at
a designated checkpoint policy. The desired behavior, given as the system goal, is that the system
either stops or eventually visits each checkpoint in order infinitely often.

Together, the automaton and policy suite serve as a hybrid control policy. For these specifica-
tions, the extracted automaton has 2400 nodes. Executing the local control policies as specified by
the automaton induces a continuous system evolution that satisfies the high level specification. At
the start of execution, we search the entire automaton as a list of nodes until a node is found that has
the correct input state (Hazard =False) and whose associated policy contains the initial pose. This
approach, which allows starting from some arbitrary initial pose, works for this particular scenario
because of the cyclic behavior of the scenario; other scenarios might require that the robot start in
the domain of a policy in an explicit set of initial policies. A simulation run is shown in Figure 6.19.
The intruder detector is triggered at an arbitrarily specified time.

The automaton governs the selection of local control policies. The automaton transitions be-
tween nodes as the system pose enters the domain of a policy associated with a child node of the
current automaton node. In other words, from nodepi, at each time step4, the values of the binary

4Thepolicies are designed as continuous control laws; however, the implementation on a computer induces a discrete
time step. We assume the time step is short compared to the time constant of the closed-loop dynamics.

Figure 6.19: A simulation of path induced by an automaton that encodes the behaviorpatrol the
corridors by visiting four specific policy domains is shown. Upon sensing a ‘Intruder’, the “timid
night watchman” goes and hides in the corner until the intruder leaves. Three robots are shown: the
initial pose to the right, the final pose when execution is terminated near the middle, and the pose at
which the intruder is detected in the lower right.

98 c© 2007 David C. Conner

sensor inputs are evaluated. Based on these inputs, all valid successor nodesare determined. If the
vehicle is in the domain of policyΦl, which is associated with a valid automaton successor node
pj , the transition is made. Otherwise, if the vehicle is still in the domain ofΦk, which is the active
policy associated with nodepi, the execution remains in nodepi. If a node has more than one child
node that represents a valid transition, the choice can be made arbitrarily. For these experiments,
the first valid transition as defined by the synthesis algorithm is chosen. This execution based on
continuous motion is equivalent to the discrete execution of the automaton [37, 61].

Figure 6.20 shows the progression of the system through the automaton nodes as the system
moves through the environment. Note the cyclic nature as the system completes three patrols before
the intruder is detected. As the automaton state transitions, so does the associated policy as shown
in Figure 6.21.

In this execution strategy, the continuous evolution of the system governs the discrete transitions
in the automaton; therefore, the resultant transitions are asynchronous, and not governed by a fixed
time step. In this current implementation, the discrete inputs act as guards on the automaton tran-
sitions; the discrete input must match the value associated with the child node to allow transition
into the child node, but does not force transition out of the current node. Another approach could
check the discrete input at each update step and force transitions out of a given automaton node if
the inputs do not match the reference input. This would require that each node has a child with the
same policy reference, but different discrete inputs .

If the prepares graph changes, the automaton synthesis algorithm must be re-run. Figure 6.22
shows the simulated path taken when an automaton is synthesized for the prepares graph with 24
policies associated with the lower corridor invalidated. The resultant automaton contains 2580
nodes; its execution correctly satisfies the original specification by only invoking valid policies.

0
0

2500

2000

2000

1500

1500

1000

1000

500

500
Time (s)

N
od

e
ID

Figure 6.20: As the system executes, the automaton changes nodes based on the discrete inputs and
inclusion of the current pose in a given policy domain. The graph shows three distinct phases. The
thirteen points marked with ’*’ indicated the check points passed. The thickest portion, which is
actually closely spaced ‘◦’ symbols, shows the portion where the intruder is detected. Notice that
the system makes multiple passes past each checkpoint before the intruder is detected.

c© 2007 David C. Conner 99

0
0

3500

3000

2500

2000

2000

1500

1500

1000

1000

500

500
Time (s)

P
ol

ic
y

ID

Figure 6.21: Each node in the automaton is associated with a particular policy in the suite. As
the system executes, the local policies are activated by the automaton based on the local pose esti-
mate.The graph shows the same three distinct phases as Figure 6.20.

Figure 6.22: As new information becomes available, such the obstacle in the lowercorridor, the
automaton synthesis formulates a different automaton based on changes to the prepares graph. The
new automaton preserves the correct behavior.

100 c© 2007 David C. Conner

The automaton synthesis approach guarantees the correct behavior undervery reasonable as-
sumptions. First, the automata synthesis only returns an automaton if the specification is realizable
for the given policy suite and associated prepares graph. Second, given a realizable specification,
the algorithm is guaranteed to produce an automaton such that all its executions satisfy the desired
behaviorif the environment behaves as assumed. The construction of the automaton is done using
LTL statements that encode admissible environment behaviors; if the environment violates these
assumptions, the automaton is no longer correct. Since the specifications encode the transitions
allowed by the prepares relationship, the only case in which the system pose is not in the domain of
Φk, or in any successorΦl, is if the environment behaved “badly.” That is, either some disturbance
caused the policies to violate the prepares relationship, or the environment violated assumptions
governing the allowable discrete inputs. This later case requires careful sensor design, with only
those restrictions that are necessary. Either case invalidates the automaton. In the event that a valid
transition does not exist, the automaton executive raises an error flag, and halts the system. A new
plan must be requested.

Unfortunately, for real systems disturbances are a fact of life. Policies may be designed to be
as robust as possible, but disturbances may still take the system out of the domain of a currently
executing policy. Often these disturbances are simply due to pose estimation updates as described
above. The hybrid control system should have a method of recovery, which will likely require
some knowledge of the hybrid control system and task. For the task described in this section, our
approach is to search the automaton as a list of nodes until a node whose associated policy contains
the current pose estimate and whose discrete input matches the current sensor value; as is done for
the initial condition. This works in this example because of the cyclic nature of the task.

A more fundamental problem occurs when the disturbance takes the system outside the domain
of all policies in the automaton. Depending on the initial specification, the automaton synthesis
does not necessarily use every available policy. As with sequence-based approaches, this has a neg-
ative impact on the overall robustness of the policy composition technique relative to the collection
of available policies. This thesis considers two approaches to addressing the problem of unused
policies.

The first approach explicitly allows the initial condition to be in any available policy and have
any allowable sensor value. The assumption during synthesis that the system is in one of two initial
policy domains is made to limit the size of the automaton. No assumptions about the initial policies
could be made; this would force the automaton synthesis to include all policies, but would greatly
increase the size of the automaton. The particular implementation of the synthesis algorithm used
in this thesis precluded this approach; this is not a theoretical issue, later work will build a more
robust synthesis tool to address this implementation issue [67].

The second approach, which is used in these experiments, is to augment the synthesized automa-
ton to add nodes for each unused policy/sensor combination. If a policy is unused by the original
automaton, but prepares another policy that is used for all input combinations, then a node is added
to the automaton with the unused policy as a reference. This added node ignores the sensor inputs.
The children of the added node are all nodes in the automaton whose associated policies are pre-
pared by the added node’s policy or have the same policy reference. Since all input combinations
are covered, a valid child transition will eventually exist. This process is repeated until all policies
that prepare others are added to the deployment. This approach maximizes the overall hybrid con-
trol policy domain for the given collection of domains, while adding the smallest number of nodes
to the automaton. This gives the system a way to “get back on track.” If the disturbance causes the
system pose to exit the domains of every policy in the suite, then the hybrid control policy will stop
the robot and cease execution. Only by adding additional policies, and regenerating the automaton
can the system recover.

c© 2007 David C. Conner 101

Figure 6.23: Actual run on LAGR robot. Here, the robot resumes patrolling afterhiding early in the
experiment.

Figure 6.23 shows an example run using the augmented automaton. During the experimental
runs, the ‘Intruder’ is signaled at will via a remote switch. The experiment successfully satisfies
the specification. Figure 6.24 shows the progression of nodes during execution. Note that the node
ID’s above 2400 are those added during the augmentation process; without these, the execution
would have ceased earlier due to disturbances. Given the augmented automaton, the system is able
to search for a node whose policy contains the current pose. Eventually, the execution did quit when
a disturbance finally took the system out of the domain of all the policies. Figure 6.25 shows the
policy switching induced by the augmented automaton. The experiment was repeated several times;
the automaton successfully induced the correct behavior each time until disturbances caused the
system to terminate; this points to the need for more policies to be added to the policy suite.

The drawback to the augment and search approach is that there is no history; therefore, the sys-
tem will sometimes repeat an earlier portion of the patrol loop, prior to visiting the other nodes. This
problem could be addressed by adding an output that encodes which “downstream” check point will
be encountered next, and using this information to guide the search for a valid node. This requires
associating each policy with the closest checkpoint before the synthesis. One possible approach is
to choose the checkpoint that generates the least cumulative cost for a given policy from a set of
costs generated by considering each checkpoint as the goal of a policy ordering. During disturbance
recovery, the system searches for a node whose associated policy domain contains the current pose
and whose “ClosestCheckpoint” output matches the assigned checkpoint for that policy.

The automata-base approach is capable of producing complex behaviors, which allow the sys-
tem to react to changes in the environment via the binary environmental inputs. Additionally, the
automata-based approach allows the system to exhibit desirable limit cycles; in this example, re-
peatedly patrolling a hallway. Thus automata-based approaches are more suitable for repetitive

102 c© 2007 David C. Conner

0
0

3000

2500

2000

1500

1500

1000

1000

500

500
Time (s)

N
od

e
ID

Figure 6.24: Node switching with invocations of augmented nodes shown by ’x’; the controller
would have ceased execution were it not for these added nodes.

0
0

3500

3000

2500

2000

2000

1500

1500

1000

1000

500

500
Time (s)

P
ol

ic
y

ID

Figure 6.25: Policy switching during an experiment.

tasks than order-based approaches. That said, the automata should make use of all available poli-
cies, and provide a method of recovery, in order to maintain robustness to disturbance that is the
hallmark of order-based approaches.

c© 2007 David C. Conner 103

6.3.2 Ackermann Steered Car-like Parking Simulations

This section provides an example of policy-based planning with the more complex system model
of an Ackermann steered car. Here, the scenario is one of searching for an available parking space,
and then parking. The environment is known; what is unknown is whether a given parking space
is available or occupied. The system has a local sensor for detecting open parking spaces; thus,
the system must search for an available parking space by systematically driving past all the parking
spaces. If an open parking space is found, the system changes behavior from searching to parking,
and executes the parking maneuver as illustrated in Figure 6.26. The results demonstrate coupled
planning and control for a complex system that exhibits complex behaviors that change based on
reactions to the changing environment.

The environment, shown in Figure 6.27, consists of two city blocks accessible from ten enter-
ing roads. Each road consists of two lanes that follow the American standard of driving on the
right side. One block is surrounded by 40 parking spaces; 20 for the clockwise direction and 20
for the counterclockwise direction. The entry/exit points are labeled 1-10 clockwise starting from
the north/south lanes at the top left of the environment. The parking spaces are identified with a
numeric identifier adjacent to each space. The roadway lanes and parking spaces are sized for an
urban environment. The robot system uses an Ackermann steered kinematic model that controls the
forward velocity and the rate of steering angle change; see Appendix F for details.

The parking demonstrations use a collection of 16 PF style policies, which are instantiated in
the policy cache relative to the origin. The cache includes policies for traveling straight down a
roadway lane, for parking and leaving a given space, and for turning at intersections. Figure 6.28
shows examples of the policies for parking and leaving, which treated as meta-policies for planning
purposes. Associated with the inlet policy of the parking policy is a sensor that determines whether
the parking space is available. If the parking space is unavailable, then the parking meta-policy
prepares some other policy further down the roadway lane. Figure 6.29 shows an example inter-
section, the deployed policies, and the extent of the robot body into the workspace. Since this is a

Figure 6.26: Parking behavior induced by the composition of local policies. Thefeedback control
policies guarantee the safety of the maneuver.

104 c© 2007 David C. Conner

−20 0 20 40 60 80

−60

−40

−20

0

20

40

m
et

er
s

meters

9
4

8
5

1

7

2

6

10
3

1

2

3

4

5 6

7

8

9

10 11

12

13

14

15 16

17

18

19

20

21 22 23 24 25

2627282930

31 32 33 34 35

3637383940

Figure 6.27: The environment has 40 parking spaces arranged around themiddle city block. Ini-
tially, there are five empty parking spaces randomly chosen in the environment.

simulation, only those policies needed for basic traffic are deployed. No attempt is made to fill the
free pose space in order to provide robustness.

For the simulations in this section, a total of 306 policies are deployed in the environment.
The regularity of the environment allows an automated approach to policy instantiation based on a
collection of reference points defined relative to the intersections and parking spaces. The policy
total includes 40 parking meta-policies and 40 leaving meta-policies, as well as 24 each left, right
and straight maneuvers at the six intersections. Policies to enter and leave the environment are
added at the 10 roadways connecting the environment to the outside world. Given the suite of 306
policies, the prepares graph is automatically defined as described in Chapter 5.

c© 2007 David C. Conner 105

a) Policies for parking. b) Policies for leaving

Figure6.28: Details of policies used for parking and leaving. The policies, which are shown relative
to the cache reference point, are shown wider than normal to show details. Six policies are associated
with parking. Five policies are used to exit a parking space and prepare policy in the traffic lane.

a) Connected policy domains projected into workspace b) Body extentover the policy domains

Figure 6.29: Deployment of policies at an intersection. The polices include those that pass straight
through the intersection, as well as left and right turns. Other policies are used to tie the straight
sections to the turns. The policy domains, which are widened to increase visibility, appear as thick
lines in (a).

106 c© 2007 David C. Conner

Basic Parking Scenarios

The basic scenario considers a single car that must park in the environment. The environmental
input is a sensor called ‘Park’ that tells the car if a parking space is available; the system output
identifies which policy to activate. The car may enter from any of the ten roadways connecting to
the two blocks. The car can only determine whether there is a free parking space if we are in a policy
next to it. This means that ‘Park’ cannot becomeTrue if the vehicle is not next to a parking space
or in one. Also, for implementation reasons, we assume that the input ‘Park’ remainsTrue after
parking. We have no assumptions on the goals of the environment, and make no assumptions about
the availability of an empty parking spot. The allowable system transitions include the transitions
of the prepares graph, the vehicle cannot park if there is no parking space available, as indicated
by the ‘Park’ input, and if there is an empty parking space the car must park; removing the last
restriction may allow the vehicle to pass an open spot before parking. The system goal encodes a
list of policies the vehicle must visit infinitely often if it has not parked yet. The list of policies to
visit defines the area in which the vehicle will look for an available parking space; in this case, the
visit policies correspond to the eight lanes around the parking spaces (four going clockwise and four
going counter clockwise). Note, this goal condition is true if either the vehicle visits these policies
infinitely often (when there is no parking space available) or it has parked. Defining a different
list of policies to visit would change the search strategy induced by the automaton. Additional
specifications could be written to tie the search strategy to the point of entry, but this would increase
the size and complexity of the automaton.

For simulations shown in Figures 6.30 and 6.31, a new vehicle is introduced at a random en-
trance. The parking spaces are filled according to the previous run. As the automaton executes, if a
parking policy is a successor to the current state, the empty/occupied status is checked via the local
‘Park’ sensor. This work does not address the required sensor, but assumes a binary output. Tran-
sition to the parking policy is enabled if the associated space is empty. If the transition is enabled,
‘Park’ remainsTrue so that other transitions are disabled until the vehicle pose enters the domain
of the parking meta-policy, and the system parks. Six runs are simulated using the global parking
automaton; The first five runs park. In Run #6, there are no parking spaces available; therefore, the
vehicle continues to circle past every possible parking space, waiting on another vehicle to leave.

c© 2007 David C. Conner 107

Run #1 Run #2

Figure6.30: Two executions of the basic parking scenario. The initial conditions for each run are
circled.

108 c© 2007 David C. Conner

Run #3 Run #4

Run #5 Run #6

Figure6.31: Four executions of the basic parking scenario. The initial conditions for each run are
circled. The last run continues to loop as no parking spaces are available.

c© 2007 David C. Conner 109

6.3.3 Multi-vehicle Scenarios

Theautomata-based approach to policy composition naturally extends to multi-agent systems [68].
The local policies guarantee predictable local behavior of a single agent; the automata governs
the switching between local policies to coordinate the high-level behavior of an agent. Taking
this approach further, Kress-Gazitet al. [68] use the environmental inputs to coordinate behavior
between agents using automata. Each agent runs its own automata-based hybrid controller, which
responds to other agents via environmental inputs; that is, the outputs of one agent become inputs
to another agent. This section details a simulation using the policy composition approach advocated
in this thesis with the automata-based multi-agent coordination scheme advocated in [68]. The
simulation results illustrate several issues that arise with this approach.

In order to expand the basic parking approach to allow for multiple vehicle scenarios, the LTL
formulas from above are modified. The approach uses an additional input and several outputs. The
additional input is ‘Hazard’, which causes the vehicle to stop in place. The hazard can be triggered
by proximity to another vehicle, or by an external device such as a stop-light. When the hazard
clears, the robot should resume motion as before. In a real system, many hazards can be avoided by
slowing down, and waiting for the other vehicle to clear. For simplicity, these simulations require
the system to stop. When the vehicle stops in response to a ‘Hazard’, the system outputs ‘Stop’.
Additional outputs signal ‘LeftTurn’ and ‘RightTurn’ as appropriate. There are also outputs that
signal the vehicles intentions for ‘Parking’ and ‘Leaving’. The automaton outputs can be sensed by
other vehicles in the environment.

The LTL specifications from above are modified to take the new inputs and outputs into con-
sideration, and allow a new “leaving” behavior. Each vehicle in the simulation runs a local copy of
one of two automata. The only coordination is via the individual ‘Hazard’ sensor. We now consider
each automaton in turn.

Parking Automaton The parking automaton for the multi-vehicle scenario is similar to the indi-
vidual case, but includes the stopping behavior and the additional outputs. The system transitions
include all the conditions of the individual parking case, plus the conditions that activate the outputs
for turning, stopping, or parking as needed. The system goal is includes the parking conditions,
but also allows for a vehicle to remain stopped if a broken stop-light or accident ahead blocks the
roadway. With these specifications, the parking automaton has 2142 nodes.

Leaving Automaton In this scenario, a vehicle is leaving its parking space and exiting the block
via some specified exit. The leaving automaton for the multi-vehicle scenario has an extra input that
specifies which of the ten possible exits the vehicle will exit. The initial environment specification
is such that only one exit is specified. Two different vehicles leaving two different parking spots
may use the same synthesized automaton with different inputs that designate the desired exit. We
require the exit specification to be constant, meaning it cannot change once it is given. We make no
assumptions on the infinite behavior of the environment, therefore the goal component remains set
to True. Initially, the car is leaving a parking space, hence it must turn on the left turn signal.

The system transitions are include the policy prepares relations, which policies turn on the
left/right signals, and always stop on hazard. The system goal specifies that the vehicle must go to
the designated exit policy unless it stops. With these specifications the leaving automaton has 1908
nodes.

The key to using these automata in a decentralized multi-agent scenario is the coordination pro-
vided by the ‘Hazard’ sensor. Each vehicle executes its own hazard sensor with a single binary value
‘Hazard.’ The ‘Hazard’ input is based on either a timed stop-light or a proximity/precedence sensor.

110 c© 2007 David C. Conner

The stop-light alternates between north/south and east/west travel along the roadways. Each inter-
section transitions at the same time; there is a slight overlap where all directions are stopped. Any
vehicle entering the policies just before the left/right/straight policies at each intersection checks the
current value of the stop-light. If the “red light” is visible, the ‘Hazard’ flag is set toTrue.

The ‘Hazard’ sensor is a discrete hybrid automaton in its own right, that attempts to determine
precedence based on the robot’s internal state and binary outputs, and the other robots relative
pose, velocity, and binary outputs. Thus the “sensor” is a mixture of continuous measurements
and discrete logic. The ‘Hazard’ checks proximity of other vehicles, and determines the precedence
relationships between vehicles; that is, which vehicle must yield to the other. For this simulation, the
‘Hazard’ sensor is hand-coded and tuned to given the proper performance. The sensor automaton
sets ‘Hazard’ toTrue whenever the car is too close to a car ahead of it (keeping safe distance),
whenever a car ahead is backing up to park (being polite), whenever the car is leaving a parking
space and another car passes by and whenever another car is leaving a parking space which the car
will park in next. In this decentralized coordination scheme, each vehicle’s ‘Hazard’ sensor must
infer the intentions of the others based their outputs. There is no centralized communication of
intentions.

Figure 6.32 shows the continuation of Run #6 with the hazard inputs added to the parking
automaton, and the new leaving automaton controlling the second vehicle. In the first snapshot,
vehicle #6 is just beginning to approach the intersection, while vehicle #7 stops for the light. The
second snapshot shows vehicle #7 dutifully waiting for the signal, while vehicle #6 has passed
through the intersection. Although not shown, after the stop-light changes, vehicle #7 exits the area

Run #7- a Run #7 - b

Figure6.32: In this continuation of Run #6, the two snap shots show a simple multiple vehicle
scenario. A timed stop-light triggers a ‘hazard’ input that causes the vehicle heading east to stop.
This allows the vehicle from Run#6 to travel through the intersection, and eventually park in the
newly available parking spot.

c© 2007 David C. Conner 111

and vehicle #6 continues around under the control of the global parking automatonand parks in the
newly open spot.

Figure 6.33 shows an example of a more complex multi-vehicle simulation. At this point in
time, seven cars are moving in the workspace. Initially, 35 of the 40 parking spaces were randomly
specified as occupied. In this simulation, eight cars enter the block at different times and from
different entry points, looking for a parking space. The times and entry points are (t=0.06 seconds,
Entry = 10), (1.0,2), (2.0,7), (5.0,8), (7.0, 5), (10.0,6), (15.0, 8), (22.0,5). During the execution,
three cars leave their parking spaces and exit the workspace. The times, parking spaces, and exit
point are (t=13.0, Parking=23,exit=1), (15.0, 6, 7), and (30.0, 32, 5). The simulation runs until 76.33
seconds of elapsed time when the last car exits or is parked. Figure 6.34 shows a general snapshot
of the simulation at a later time. Cars whose ‘Stop’ output isTrue are marked with red ellipses; that

Figure 6.33: A snapshot of a more complex multi-vehicle simulation. Each vehicle executes an
automaton that encodes the high-level specification “stop on hazard” and either “drive around until
you find a free parking space and then park” or “leave your parking space and exit the block”.
Coordination between robots is done via an individual ‘Hazard’ sensor in a decentralized approach.
This snapshot is taken at 15.91 seconds.

112 c© 2007 David C. Conner

is, those cars who stop because the ‘Hazard’ input isTrue. The three stopped cars in Figure 6.34
are obeying stop-lights.

Figure 6.35 shows several close up looks at different traffic behaviors encountered during the
simulation. In (a), the blue car which is leaving the parking space has stopped, indicated by a red
ellipse, to let the brown car drive by. This ‘Hazard’ was invoked based on a “proximity sensor.”
In (b), red car is parking while the blue car waits for it to finish before passing. In (c), the orange
car is stopping to allow the gray car to complete a left turn, according to the precedence established
by the individual car’s ‘Hazard’ sensors. The white car on the left is leaving the parking space
that later will be occupied by the brown car. Figures 6.35-d and (e) are two snapshots of two cars
parking simultaneously in opposite lanes. The car that started the parking maneuver later (bottom
lane) pauses to allow the other car to park safely. Figure 6.35-f shows two cars stopping before a
stop-light. While the white car stopped based on the stop-light, the black car behind stopped based
on the proximity to the car ahead of it.

Figure 6.34: A later snapshot taken at 31.33 seconds during the simulation. Inthis figure, cars
surrounded by red ellipses are cars that are stopping due to the ‘Hazard’ input signaled by the timed
stop-light.

c© 2007 David C. Conner 113

(a) Blue car leaving (t=15.91 s) (b) Red car parking (t=34.69 s)

(c) Yielding to turn in progress (t=16.29s) (d) Two cars parking (t=26.41s)

(e) Two cars parking (t=27.18) (f) Two cars at stop-light (t=46.39s)

Figure6.35: Close up looks at different behaviors seen throughout the simulation.

114 c© 2007 David C. Conner

Sensors, or more specifically the binary inputs used by the automaton, are fundamentalto the
success of this decentralized approach. First, as mentioned above, the sensors must satisfy the
assumptions made about them in the LTL formulas for the environment; otherwise the automaton
will not be correct. Failing to trigger ‘Hazard’ may allow collision as the local policies do not
consider obstacle avoidance. Second, even if the sensors do satisfy these assumptions, they may
still cause correct, yet unintended behavior. For example, if the proximity sensor set the ‘Hazard’
input toTrue whenever another vehicle was in a certain radius, even if the other vehicle was behind
in a forward driving lane, both vehicles may get deadlocked; that is, both would stop forever. While
this behavior satisfies the original specification, it does not follow the spirit of finding a parking
space. On the other hand, both cars stopping might be a desired behavior when an accident occurred,
therefore we would not want to forbid it in the specifications.

Currently, there are no guarantees that the implemented ‘Hazard’ sensor automaton is correct
in all cases, and will not introduce deadlock. Such unintended behavior would not be present in a
centralized approach where the controller has full knowledge and not just local information as is
the case here; however, the centralized approach does not scale well. The decentralized approach,
which does scale well for additional robots, may deadlock for a poorly designed hazard sensor;
thus, much work remains to develop automatic ways of specifying the ‘Hazard’ sensor automaton
and prove that the composition of these multiple automata is free of deadlock.

6.4 Summary

This chapter has presented several experiments which validate the approach advocated in this thesis.
The approaches to planning in the space of control policies, and composing local policies to induce
the desired behavior, is demonstrated with experiments on real robots and simulations on realistic
systems. A range of planning approaches and scenarios are demonstrated. To our knowledge, this
is the first experimental verification of these techniques on real wheeled mobile robots with non-
circular body shapes; that is, body shapes where orientation is fundamental to the safety of the
approach.

Several broad conclusions can be drawn from these results. In general, order-based approaches
are preferred over sequence based approaches due to the enlarged domain; this is in keeping with the
aim of designing “global” policies. Automata-based approaches are useful for generating complex
reactive tasks; the policy composition approach advocated in this thesis extends these techniques to
real world, complex systems.

Overall, the results validate the approach; however, several issues have been identified. First, the
policies can only induce behaviors that the system execute. If the mechanical system is incapable
responding to the controls, the properties of composable policies will be violated. Thus, either the
system dynamics must be modified, the policies redesigned, or additional policies added to provide
more robustness. Since disturbances are a fact of life, automata-based approaches should make use
of all available policies in keeping with the global policy theme, and provide a method of recovery
in the face of large disturbances. The hybrid control policy should also have a method of identifying
undesirable limit cycles, and have a recovery strategy. Finally, while the automata-based approach
to decentralized multi-agent control is promising, the design of a hybrid sensor automata, which
can provide provably correct performance with the composition of individual automata, remains an
open problem.

c© 2007 David C. Conner 115

117

Chapter 7

Conclusion and Future Work

This thesis extends sequential composition of local feedback control policies to wheeled mobile
robots in a way that enables the automatic synthesis of hybrid control policies. The resulting hybrid
control policy inherits the safety and convergence guarantees from local feedback control poli-
cies, and provably satisfies the high-level behavior by construction. This thesis demonstrates this
approach on real mobile robots with multiple interacting constraints. The robots, which have non-
circular body shapes in addition to nonholonomic constraints and input bounds, operate in confined
and cluttered environments. This thesis treats these constraints in a holistic manner, and enables
existing methods of formal symbolic planning to be applied to these highly constrained systems.
By leveraging symbolic planning techniques, complex tasks can be specified at a high-level, and
then executed in a manner that guarantees the correct behavior on real systems. We define the ba-
sic requirements for local policies to be composable in a hybrid control framework, which guides
our policy designs. While wheeled mobile robot navigation is the chosen domain, the ideas in this
thesis are extensible to many constrained dynamical systems provided one can define composable
policies.

The approach uses the composition of memoryless state feedback control policies to address
high-level task specifications in a provably correct manner. This thesis develops several generic
feedback policies that encode the low-level behaviors in a way that enables their formal composi-
tion, and demonstrates several symbolic planning approaches on real mobile robots. The symbolic
planning methods automatically define switching strategies among the local policies that realize
high-level behavioral specifications, or indicate that the desired behavior cannot be realized with
the current suite of instantiated policies. This approach enables a formal method of constructing
near-global hybrid feedback control policies that respect local constraints.

This chapter provides a summary of the thesis contributions and discusses the approach’s strengths
and weaknesses. The discussion points to future research, which will improve the approach and
extend its applicability. The goal is to allow even more complex systems to benefit from policy
composition in a way that guarantees formal correctness, and provides a natural method of specify-
ing complex behaviors.

7.1 Contributions

This thesis enumerates several composability requirements that must be satisfied before policies
can be composed in the hybrid control framework:i) domains lie completely in the free state space
of the system,ii) the system must reach the designated goal set in finite time,iii) under influence
of a given policy the system trajectory must not depart the domain except via a specified goal set,
and iv) the policies must have efficient tests for domain inclusion given a known state. While not

surprising, these requirements guide the evaluation of specific policy designs,and suggest tests to
validate a specific policy instantiation.

New tests are developed in order to verify that the local feedback policies satisfy these compos-
ability requirements. The thesis develops an approach to verify that the policy domains are collision
free without constructing the free configuration space. Our approach is based on expanding the
policy domain to account for the body extent, and then testing the projection into workspace for
collision. Using a discrete approximation of the cell surface, the approach uses an exact mapping to
points on the expanded cell. These expanded points are projected to workspace, where the resulting
tests are trivial. The thesis presents proof of correctness for the expanded cell approach to collision
testing. For the remaining composability requirements, the thesis presents validation techniques
based on the specific policy designs.

This thesis introduces composable flow-through policies to the sequential composition paradigm.
Flow-through policies allow the designer to put off the implications of Brockett’s theorem, and de-
sign smooth time-invariant polices for nonholonomic systems over a local region. The constraints
of Brockett’s theorem are realized through the switching behavior of the hybrid control policy.
Flow-through policies naturally encode many desired navigation behaviors, but introduce added
complexity in the prepares test. The policies must now consider the full system state when evaluat-
ing the prepares relationship; that is, second-order systems must also include a velocity test.

The standard prepares relationship between policy domains is extended to allow a policy to
prepare a set of policies, without preparing any one policy in the set. This extension adds flexibility
during policy instantiation to define larger goal sets, which tend to enable larger policy domains.
The extended set-based prepares definition introduces non-determinism into the prepares graph used
for planning; thus this added flexibility comes with a cost that must be born by the discrete planner.
The thesis used D*-lite to address the non-deterministic transitions [81].

We have developed two families of generic feedback policies that are applicable to several non-
holonomic systems. These policies, which are detailed in the appendices, form the foundation for
the experimental results presented in the thesis. It is important to note, that these policies are only
examples of composable policies. Any policy that satisfies the composability requirements may be
used in the policy composition framework.

To aid in the deployment of the policies, the thesis demonstrated an approach to semi-automated
policy instantiation based on a limited cache of policies that induce basic behaviors. Although
specifically applied to the policies introduced in Chapter 5, the approach is general and can be ap-
plied to any policy that meets the composability requirements of Chapter 3. The thesis developed a
technique for evaluating the relative completeness of a given suite of policies; this gives a qualitative
method of evaluating one suite of policies against another.

Finally, the thesis provides several demonstrations of the coupled planning and control frame-
work using policy composition. Both simulations and experiments are presented using a variety of
system models in constrained environments. The policy composition approach demonstrates emer-
gent behaviors, such as K-turns, during simple navigation, as well as complex multi-task behaviors
governed by automata. The automata are automatically synthesized based on the suite of local
feedback control policies instantiated using our techniques. This thesis represents the first known
experiments with these approaches on constrained systems operating in cluttered or confined envi-
ronments.

Benefits of Policy Composition Since the hybrid control policy is based on local feedback con-
trol policies, the overall controller inherits the properties of the individual policies. This allows the

118 c© 2007 David C. Conner

individual policies to be tuned to local conditions, whether to provide safety orenhanced perfor-
mance. The local policies, in order to be composable, have provable convergence guarantees, and
retain the robustness to disturbances that is the hallmark of feedback control. The local feedback
control policies are designed to be memoryless, and allow for real time control. Because each local
policy has an explicit domain, the hybrid control approach is inherently safe. If a disturbance takes
the system outside the domains of all policies, the robot is halted and execution of the hybrid control
policy terminates.

By planning in the space of control policies using the prepares graph, the planning becomes very
flexible with regard to task. This approach opens the door to formal synthesis of hybrid feedback
controllers for complex systems; for example the parking controller demonstrated in Chapter 6. The
approach allows analysis of the reachability of a goal, or realizability of a specification, with a given
policy suite during the discrete planning phase, prior to execution.

Using automata to execute the local feedback policies allow the systems to exhibit complex,
multi-task behaviors. The approach enables tasks to be specified at a high-level, and then executed
in a continuous manner, using a hybrid control policy synthesized from the suite of local control
policies and associated prepares graph. Repetitive tasks are naturally encoded in the framework,
which allows the approach to induce limit cycle type behaviors.

Drawbacks of Policy Composition Unfortunately, the power and flexibility of policy space plan-
ning does not come for free, and it not applicable in all situations. The design of suitable policies
is not trivial. The policies must have explicit domain representations in order to quickly evaluate
the suitability of a given policy, which precludes the use of many simple discrete representations.
Designing suitable domain representations requires insight into the system and its constraints, and
the environment at hand.

Given a set of generic composable policies, there is significant upfront cost to instantiating and
validating the policies. This upfront cost is mitigated by two factors. First, is the flexibility of
planning in the space of policies, as demonstrated in this thesis. The second factor is the ability to
reuse existing deployments within a known environment.

The demonstrations in this thesis assume a static known environment. The policies in this thesis
do not adapt moving obstacles, or unknown obstacles, except in the limited case of invalidating
whole policies within the suite and re-planning using D*-lite. This thesis does not explore adding
policies as an environment is explored; thus, the current approach is not well suited for initial
exploration of an unknown environment.

The approach is limited to those behaviors that are instantiated. If there are not enough policies
deployed, or they fail to cover a large enough fraction of the free configuration space, the approach
may not be robust to significant disturbances. The discrete planner can only take advantage of
policies that are previously instantiated. Thus, there is a implicit demand that the designer consider
the needs of the system during definition of the policy suite. This points to the need for more
automated methods for policy instantiation that can be applied on-line if significant disturbances
are encountered.

The policies demonstrated in this thesis rely on vehicle pose estimates. The safety of these
policies is dependent on accurate localization. Repeatable disturbances due to the localization can
induced unwanted limit cycles if they violate the monotonic switching of the orderings. The hybrid
control approach needs a supervisor to recognize and address this problem.

c© 2007 David C. Conner 119

7.2 Future Work

This thesis has demonstrated the usefulness and flexibility of the policy composition approach on
real constrained systems. There remain several fruitful avenues of exploration that build upon this
thesis; these include work to overcome the drawbacks mentioned above, as well as extension to
more complex systems. Several directions offer opportunities for multi-disciplinary collaboration
between computer scientists, engineers, and control theorists.

7.2.1 Extension of the Basic Approach

Building on the foundation provided by this thesis, there are two areas that need further study.

Disturbance Quantification As described in this thesis, disturbances are a fact of life that must be
dealt with for any real system; local feedback policies coupled with the order-based approaches to
hybrid policy design offer some inherent robustness to such disturbances. Problems remain where
large disturbances take the system outside the domain of all policies, or repeatable disturbances
induce undesirable limit cycles. At present, we do not have a quantifiable description of when
these disturbances are “too large”, or likely to induce undesired limit cycles. Robustness analysis
of the local policies, and more importantly the overall hybrid control policy, is an open area of
research. We would like to provide guarantees such that disturbances within a certain bound and
rate of occurrence will not induce undesirable limit cycles, and will remain within the domain of
the overall hybrid control policy.

Hierarchical Design The component policies and meta-policies represent one type of hierarchy
described in this thesis. The synthesized hybrid control policies, both order-based and automata-
based, are another level in the overall hierarchy. In this thesis, the definition of meta-policies was
strictly an engineering choice based on intuition gained by working with the component policies.
Grouping component policies in meta-policies reduces the burden on the planning algorithm by
reducing the size of the prepares graph, but also limits the planning flexibility. To date, we do
not have a formal method of evaluating the choices of individual component policies versus various
groupings in meta-policies, other than the basic computation complexity of determining the prepares
graph for larger collections of policies.

Another level of hierarchical design would treat a synthesized hybrid control policy as a meta-
policy within some higher-level framework. For example, the LAGR experiments were conducted
on one floor of a building. Each separate floor would have its own deployment of local policies,
with connections provided by the elevators. One option is to combine the policies from every floor
into one large suite of policies, with its associated prepares graph. Another, more scalable option, is
to treat each floor as a meta-policy, and then plan at both the floor level, and then between floors at
the hybrid meta-policy level. Determining the appropriate level of abstraction and number of layers
within this hierarchical framework is currently anad hocdecision based on engineering intuition.

Going one step further, and considering an automata-based hybrid control policy as a meta-
policy within a hierarchical framework leads to a notion ofhybrid prepares, where the prepares test
depends on both the continuous goal set of the overall goal policy and the discrete outputs of the
automaton. Thus, work remains for incorporating these tools within a large scale fully autonomous
framework.

120 c© 2007 David C. Conner

7.2.2 Extension of Policy Design Techniques

To fully realize the benefits of policy composition, additional design tools must be developed. The
design of the composable policies for the nonholonomic systems described in this thesis only re-
quired three dimensions, yet the specification of the domains required much thought. As the system
complexity increases along with the dimension of the configuration space, the ability of human de-
signers to specify composable policies becomes even more challenging. In this section, we outline
several directions for research that will expand the ability to design composable policies, both for
the systems considered in this thesis and the more complex systems mentioned later.

Sensor-based Policies The policies in this thesis were based on knowledge of full state informa-
tion, which required localization. One can design policies that use sensor based measurements to
define policy domains and goals [55, 97]. For example, consider the flow-through policies of [97]
that move a vehicle through a doorway using visual servoing. As long as the policies satisfy the
composability requirements, sensor-based policies can be readily incorporated into our policy com-
position framework.

Value Function Approximation One of the challenges of policy design is to design a policy
domain that acts as a funnel. That is, it captures a relatively large region of state space, but brings
the system to a relatively small goal set, allowing for simple prepares tests. The geometric approach
followed in this thesis is somewhat limited, but provides the ability to test for collision via the
expanded cells and test for state inclusion during execution.

On the other hand, optimal control techniques can use dynamic programming to find a value
function that corresponds to the maximal cell definition. This approach normally depends on dis-
crete representations that lack simple inclusion tests. One natural approach uses a finite set of basis
functions to approximate the value function [43]. The combination of basis functions can be used to
quickly check for state inclusion and test for collision as demonstrated in this thesis. The flexibility
of the basis function approach will likely allow for the definition of more expressive cells; however,
the selection of the proper set of basis functions is something of an art. The composability proper-
ties must be verified for the approximate function, and not for the value function used in the initial
optimal control problem.

Local Reactive Planning With the increases in computing power and memory, the line between
control and planning is becoming more blurred. Many systems, most notably those participating in
DARPA’s “Grand Challenges”, are using local planning in real time to determine control inputs that
define certain trajectories [28]. The systems use local planning to react to obstacles, while using
conventional grid based planning, or provided way points, to define the desired path. Assuming the
system is capable of doing this planning fast relative to the system dynamics, the local planner acts
as a feedback control policy.

This opens the door to combining local reactive planning with the policy composition approach
at the high level. By defining cells that provide boundaries on the planning, and then planning
within the cells, the system has the freedom to react to unexpected obstacles within the cells, while
maintaining a predictable transition between regions. One can imagine defining cells based on road
lanes, or other geographic data. Thus, the local planning can be directly incorporated into the policy
composition/automata synthesis approach advocated in this thesis. This opens the door to formal
methods of guaranteeing high-level behaviors, while preserving the low-level ability to react to
unexpected changes on the local level.

c© 2007 David C. Conner 121

Another possibility is to use local planning as an exploration strategy, but use cellsand policy
composition as a compact representation of free space. This allows one robot to explore the envi-
ronment using some technique, and then share data with other robots in the form of a suite of cells
and prepares graph. This approach would benefit from machine learning/function approximation
approaches to define and instantiate the cells on-line during exploration. The robot that is explor-
ing the unknown space instantiates cells and defines the prepares graph for the other robots during
execution. The suite of policies and prepares graph is a compact representation of the available free
space. The suite and graph representation would also be useful for recovering from deep dead ends
where maintaining a full cost map is impractical.

Model-based Local Control As the policy composition and hybrid control approach is extended
to systems with second-order dynamics, or complex high-dimensional systems, defining closed
form controllers will become difficult. One alternative is to use model-based control methods, such
as Model Predictive Control (MPC), to specify control actions [42]. Here a finite set of control
actions is evaluated at each step, and the best performing series of actions is chosen. With MPC,
the evaluations are based on the outcomes of discrete simulation steps. This approach is related
to dynamic programming and optimal control methods; however, here the approach is based on a
greedy finite horizon simulation. If a conservative domain representation can be found, over which
the MPC approach is guaranteed to find a solution, MPC can be incorporated into the design of local
control policies.

7.2.3 Extension to More Complex Systems

The real payoff for policy composition is with more complex systems, whose dynamics are fun-
damental to the control. Planning methods must take these dynamics into consideration during
planning, otherwise the plans will not be feasible. This represents an obvious path for continued
research, but one that requires advanced policy design techniques.

Purely-Kinematic Systems with Second-order Shape DynamicsDirectly building on this the-
sis, the policies should be modified to account for second-order dynamics on the shape space. This
thesis only considers nonholonomic systems with first-order dynamics; the natural extension is to
consider direct control of torques, and account for second-order motor and inertial dynamics. This
could allow for more aggressive control techniques that account for system limitations. The control
of the shape variables is fully actuated; therefore, a variety of control techniques are available on
the bounded shape space.

Mixed-Mechanical Systems Another natural extension is to apply the approach to so called
mixed-mechanical systems, such as the snake-board [112]. Due to the interesting mathematics of
such systems, recent work has focused on developing gaits for these systems; however, the work has
generally focused on open-loop control in obstacle free environments [112, 96]. Research should
use the intuition gained from the open-loop gaits to design feedback policies with explicit domains
and goal sets. Then, the policy composition approach advocated in this thesis opens up these sys-
tems to address real navigation and control tasks.

General Dynamical Systems Researchers often come up with systems with complex dynamics,
whose performance is limited by available control methods. As an example, consider systems that
are not statically stable such as the balancing “ball-bot” and systems than are capable of true bipedal

122 c© 2007 David C. Conner

running via energy storage [49, 74]. Control policies for these systems mustrespect the system dy-
namics during any transition between behaviors. While some results have been obtained designing
controllers for very specific behaviors, it is our hypothesis that the systems will require formal anal-
ysis of policy composition to generate useful behaviors. To switch between steady-state behaviors,
the system must respect the dynamics and the domain of attraction of each local policy. Thus, the
design of composable policies becomes a fundamental challenge for moving these systems into the
real world in a way that allows for robust behaviors and complex tasks. Provided composable poli-
cies can be found for these systems, the various planning tools demonstrated in this thesis allow for
planning of real world task for these systems.

As another example, consider today’s humanoid robots. The zero-moment point control (ZMP)
approach is based on keeping the robot in a stable configuration as the system moves [54]. This
limits the behaviors of the robot, as the system cannot pass through a transient unstable configura-
tions. The formal policy composition approach offers a chance to extend the capabilities of such
systems by designing composable control policies for different regions of the robot’s state space,
and formally composing them using synthesized automata. Hybrid control policies can be used to
induce cyclic behaviors such as walking or running that are more expressive, while enhancing the
performance and safety of the system. The automata will be used to switch between behaviors,
such as balancing, walking, running, kicking, and climbing, based on the system’s instantaneous
state, while reacting to the systems hybrid dynamics induced by intermittent contact. The key is
to develop approaches to synthesize the hybrid control policy automatically, in a way that provides
formal guarantees across the state space of the system. Analyzing the system for “composability”
may also lead to insight into designs that simplify the control design by the addition of passive
elements that remove or add energy at certain points in the state space.

7.2.4 Extension of Planning Tools

The demonstrations provided in this thesis highlight the power and flexibility of the policy compo-
sition approach. They also point to several shortcomings that should be addressed in the discrete
planning domain. Addressing these issues will increase the power of the policy composition ap-
proach for the policies and systems described above.

Sensor Automata and Composition The automata synthesis approach described in Chapter 6
depends on sensors that provide binary signals to the automata during run time. As with the ‘Hazard’
sensor, these “sensors” are often hybrid automata in their own right. That is, the binary sensor values
depend on a mixture of continuous variables and discrete logic. Defining these sensors is currently
done on anad hocbasis. Techniques are needed to synthesize these sensor automata, and prove
that the composition of multiple sensor and control automata are valid, and preserve the desired
specifications and liveness conditions. An example, taken from the simulations in this thesis and
the DARPA Urban Grand Challenge (UGC), is the need to resolve precedence at intersections and
four-way stops. Formal synthesis methods coupled with local policy composition offers a way to
automate what is currently a labor intensive, error prone process; as evidenced by the failures of
most of the teams that entered the DARPA UGC.

Formal Recovery Methods and Global Synthesis Disturbances are a fact of life. Thus, the
automata synthesis should include all available policies to maximize the domain over which the
automata is valid, and have a formal method of recovery. For the repetitive behaviors, such as
patrolling, demonstrated in this thesis, it is sufficient to augment the automata with unused policies,
and then search for a node that had the correct discrete sensor values and whose associated policy

c© 2007 David C. Conner 123

contained the current pose. A more complex scenario, such as the mail deliveryrobot, will require
a more formal recovery approach to allow the system to recover gracefully. Instead of anad hoc
approach, a formal and automated approach to defining a recovery strategy is desired. The recovery
approach should also include all policies to maximize the domain.

Automata Synthesis with Heuristic Costs A major shortcoming of the automata synthesis ap-
proaches demonstrated in this thesis is that they do not consider heuristic costs. Within a given
policy suite, there may be many policy combinations that will address a given scenario. In fact,
this is desirable for maximum planning flexibility. The synthesis approach needs to be able rank
different policy choices based on their relative cost. Current techniques only consider the number of
transitions made, that is the number of edges traversed in the graph walk, when choosing policies.
The focus of current techniques is on dealing with the state explosion problem using efficient data
structures such as Binary Decision Diagrams (BDD) [20, 23]. There has been some work in com-
bining BDDs with heuristic search; for example, consider the Set{A*}approach [52]. That work
may prove fruitful for automata synthesis research.

Automata Synthesis with Non-deterministic Outcomes The automata synthesis used in this the-
sis only considered deterministic prepares graphs. This eliminated the use of the extended prepares
relationship. There has been some work on defining sequence based approaches which allow non-
deterministic prepares graphs [62]; however, the synthesis techniques for reactive automata do not
allow non-deterministic transitions at this time.

Automata Synthesis with Hybrid Stability Analysis The stability of the order-based hybrid poli-
cies is based on the assumption of monotonic policy switching. With automata, limit cycles are
allowed. In the hybrid systems community, it is well known that switching between stable vector
fields can induce instability [13, 30, 79]. While this is not an issue for the kinematic systems ad-
dressed in this thesis, stability analysis will be fundamental to more complex systems. There are
several approaches to analyzing the stability of existing hybrid systems [13, 30, 79]; however, going
in reverse, the synthesis problem must address this issue during construction.

To conclude, this thesis advocates an approach to specifying robot controllers that respects low-
level constraints by design, and provides a natural interface for specifying user intentions. Low-level
feedback control policies induce local behaviors in a guaranteed manner. The user interacts at a
high-level to specify intended behaviors. The robot then automatically synthesizes a hybrid con-
trol policy that can realize the intention, or reports that the goal is not realizable for the current
collection of policies and initial condition. The hybrid control policy inherits the desirable prop-
erties of the local feedback policies, while guaranteeing the high-level behaviors. This approach,
which is demonstrated on a class of nonholonomically constrained systems in this thesis, is widely
applicable, and likely necessary for the dynamically capable robots of the future.

124 c© 2007 David C. Conner

125

Appendix A

Modeling Framework

This appendix provides a detailed presentation of the modeling framework used in this thesis, and
sets the notation used throughout the document. In addition to definitions of the relevant terms,
we provide detailed derivations of the models used in the examples. First, this appendix provides
a generic description of the environment and notation for the generic navigation problem. Within
this context, the distinction between workspace, configuration space, and state space is highlighted.
Next, the section presents the model used for nonholonomic Pfaffian constraints. The appendix
continues with a discussion of the geometric relationships among configuration variables and the
nonholonomic constraints. Finally, the section concludes with the presentation of the specific sys-
tem models used in this thesis.

A.1 Work space, Configuration space, and State Space

The robotic system consists of a single body that navigates through a planar environment that is
cluttered with obstacles. The planar environment, orworkspace, is a bounded subsetW ⊂ IR2.
To address the navigation problem, the robot body must move along a path that reaches the overall
goal, while avoiding obstacles along the way. For this thesis, the obstacles in the workspace are
represented as the union over a finite set of convex regions{Ok} ⊂ W, whereOk denotes thekth

convex obstacle. The obstacles are assumed to be in a known fixed location.

O1

O0

θ

O2
O3

R(g)

O4

O5

W0

Figure A.1: Representation of planar workspace with five obstacles and robot. The workspace
frame is denotedW0; the body pose relative toW0 is denotedg = {x, y, θ}. The body occupies
R (g) ⊂ W. The workspace boundary is denoted asO0.

Let g = {x, y, θ} ∈ G = IR2×S
1 denote the bodypose, which is the position and orientation of

a body fixed reference frame relative to the world frame. This relationship is shown in Figure A.1.
LetR (g) ⊂ W denote the two-dimensional set of workspace points occupied by the body at pose
g. Thus, for all body poses,g, along a collision free path,

R (g)
⋂

(

⋃

k

Ok

)

= ∅ .

For this thesis,R (g) is assumed to be a convex set that is fixed relative to the body reference frame
of the robot.

To fully specify the robot, certain internal variables must be specified in addition to the body
pose. These internal variables are referred to asshapevariables, as they are typically internal vari-
ables such as wheel rotations, steering angles, or joint angles [1, 96]. Thus, the robot configuration
is fully specified asq = {g, r} ∈ Q = G ×R, wherer ∈ R denotes the shape space andQ denotes
the configuration space of the system. The shape spaceR may or may not be bounded. The free
configuration space, denotedQfree, is the set of all collision free configurations; that is

Qfree =

{

q = {g, r} ∈ Q | R (g)
⋂⋃

k

Ok = ∅
}

.

The configuration evolution is governed via inputs to the system. The relation of input to con-
figuration velocity is specified by the equations of motion for the system; these equations of motion
must be derived for each system. There are two fundamental classes of systems. Forkinematic
systems, the control inputsu ∈ U directly control the configuration velocities; that isq̇ = f (q, u).
Thus, for kinematic systems there is a first-order relationship between input and velocity such that
f : Q × U → T Q, whereT Q represents thetangent bundleof the configuration space. The state
space of the system is simplyX = Q.

In contrast, the inputs forsecond-order dynamicalsystems specify the system accelerations,
which effect velocities via integration; that is̈q = f(q, q̇, u). The mapping,f : T Q × U → T T Q,
between input and velocity/acceleration is a generally non-linear function of state. To fully specify
the motion of the system, both the configuration and its associated velocities must be specified; thus,
thestateof the second-order system isX = {q, q̇} ∈ T Q.

For both kinematic and second-order systems, the equations of motion given by the nonlinear
functionf is derived from the system constraints. Givenf , the control problem is to specify con-
trol inputsu ∈ U such that the system moves along a collision free path and reaches the overall
goal while respecting any configuration space bounds. To be a valid control, the inputs must be
chosen from the bounded input spaceU . Thus, solving the navigation problem requires solving a
constrained non-linear control problem. The nature of the constraints is the next topic.

A.2 System Constraints

This thesis considers several classes of constraints, including input bounds, velocity bounds, con-
figuration bounds, and nonholonomic constraints.

The most basic constraint is an equality constraint on some configuration variable,h(q) =
constant. For these constraints, the evolution of the system evolves on a sub-manifold of the con-
figuration space defined by the constraint. In this case, the dimension of the configuration space is

126 c© 2007 David C. Conner

reduced, and one only needs to consider the remaining configuration parameters.In this thesis, all
of the systems are reduced to the minimum number of configuration variables.

The second type of constraint is an inequality constraint of the formh(q) ≤ 0 or h(q) ≥ 0.
Obstacles are in this class of constraint, as are steering limits. These constraints are typically hard
mechanical limits; therefore, the control policy should avoid the constraint surfaces.

Inequality constraints on velocities are generally bounds imposed by actuator limitations or
safety considerations. A common limitation is the maximum speed output by motors. It is per-
missible to approach this type of limiting surface. Other constraints may be imposed by safety
considerations, whether due to externally imposed speed limits or internal limitations due to vehicle
dynamics. As a latter example, the turning rates may be bounded at higher speeds to prevent roll-
over. Whether velocities or torques, the actuator input space is bounded by a collection of inequality
constraints.

The final constraint we consider is an equality constraint on velocities; this thesis is only con-
cerned with so calledPfaffianconstraints, which are linear in the velocities [1, 87, 94]. Pfaffian
constraints, which have the formc (q) · q̇ = 0, are able to express the velocity constraints inherent
in wheeled vehicles. The constraints dictate that any valid velocity must lie in the null space of the
constraints; the constraint null space, which represents the set of all possible velocities at a given
configuration, is called theconstraint distribution, denotedDq.

Pfaffian constraints are classed as eitherholonomicor nonholonomic. Holonomic constraints
have an equivalent configuration constraint of the formh(q) = 0; holonomic Pfaffian constraints
are said to be “integrable.” Nonholonomic Pfaffian constraints are said to be non-integrable because
they do not have an equivalent configuration constraint, and therefore, do not reduce the dimension
of the configuration space1. TheLie Algebra Rank Condition (LARC)test provides a convenient test
over the constraint distribution to see if a particular set of Pfaffian constraints is non-integrable, and
hence, nonholonomic [1, 87, 94].

For a brief example, consider the kinematic unicycle model commonly used in robotics. The
system configuration is given by the pose, henceq = {x, y, θ}; there are no shape variables in
this model. The system is constrained such that its sideways velocity is zero; in Pfaffian form, this
constraint is

[

sin θ − cos θ 0
]

·

ẋ
ẏ

θ̇

 = 0 .

The commonly used basis for the null space, represented as matrix columns, is

A (q) =

cos θ 0
sin θ 0

0 1

 . (A.1)

Treating our inputs asu = {v, ω} ∈ U , the forward velocity and turning rate respectively, we have
q̇ = A (q) · u. Thus, the nonholonomic constraints are used to derive the equations of motion.
Stated differently, the columns ofA (q) span the constraint distributionDq. Given bounds on the
input spaceU , the set of reachable velocities inDq is likewise bounded. If rate of turningω is
bounded, the unicycle model is often referred to as “car-like” in the literature [120].

Notice, that the kinematic unicycle is under actuated; only two inputs are used to control three
configuration variables. The LARC is used to verify that these two inputs are sufficient to guaranteed

1Technicallyinequality constraints are also “nonholonomic” constraints, but we reserve the term for non-integrable
velocity constraints [87].

c© 2007 David C. Conner 127

controllability with respect to the full configuration space [1, 87, 94]. One ofthe fundamental
difficulties in controlling nonholonomic systems2 is dealing with the effects of this under-actuation.

To assist in the analysis and control design, we now take recourse to differential geometry and
geometric mechanics, and use the language offiber bundlesandconnections. This allows us do
define specific relationships between the body pose and the shape variables. While the remainder of
this appendix focuses on the nonholonomic constraints that determine the equations of motion, the
reader should keep in mind that any real system is subject to other bounds, which act to limit the set
of achievable velocities/accelerations.

A.3 Fiber Bundles and Connections

This section presents a brief overview of the fiber bundle concept as it relates to the nonholonomic
systems encountered in this thesis. For a full treatment, the reader is referred to [1]. This subsection
provides an abstract overview of the terms, the ideas are made concrete in Appendix A.4.

Consider a decomposition of the configuration space into two subspaces, as depicted in Fig-
ure A.2. These spaces are referred to as the base(B) and fiber spaces(F). Given a projection
π : Q → B, the fiber atb = π (q) ∈ B is defined asF = π−1 (b). Locally, Q ∼= F × B; if
this is true everywhere, thenQ (F,B, π) is a trivial fiber bundle. If the fiber is homeomorphic to a
groupG, thenQ (G,B, π) is called a (trivial)principal fiber bundle. The configuration spaces of
mechanical systems are trivial principal fiber bundles [112].

For systems considered in the proposed thesis, the configuration variables that are directly con-
trolled define the base space and the groupG is a Lie group corresponding to rigid body motion.
For most of the systems in this thesis,G = SE(2), whereSE(2) is the Lie group manifold cor-
responding to the body pose. This thesis abuses notation slightly by usingg to represent either the
local coordinates(x, y, θ) ∈ IR3 or the group element inSE(2), andG to represent either the local
IR3 chart orSE(2). The form being used will be clear from context. The base variables correspond
to theshapevariables described in Chapter 5 [96].

The real power of this geometric analysis comes with second-order systems. For certain second-
order systems, the equations of motion may be reduced to second-order equations defined only on
the base variables [1, 90]. Not only does this reduce the dimension of the second order equations,
the resulting control on the base space is free of nonholonomic differential constraints. The fiber
velocities are reconstructed from base velocities using the connection, which naturally satisfies
the nonholonomic constraints. While these second-order effects are not explored in this thesis,
the formalism provides useful insight into the connection between the inputs and the body pose
velocities. The analysis will also form the basis of future extensions of this thesis’s work to second-
order systems.

The relationship between motions on the base space and motions along the fiber is governed
by aconnection[1, 90]. The concept of a connection is quite general, and can be used for systems
with non-trivial momentum effects between the base and fiber spaces; a common example in the
literature is the snake-board [96]. This thesis is restricted to simplerpurely kinematicsystems, so
named because the connection encodes a linear first-order (kinematic) map that only depends on the
configuration of the system, and not the velocity. We defer the formal definition until later in this
section, after the necessary preliminaries are defined.

2It is the constraints that are “nonholonomic”, but we will follow the literature and refer to systems subject to non-
holonomic constraints as “nonholonomic systems.”

128 c© 2007 David C. Conner

Figure A.2: Base-fiber decomposition of configuration space. (Courtesy ElieShammas)

A connection,A : TqQ → TqF , projects arbitrary velocities onto the fiber tangent space3.
Define thehorizontal spacehorq = kernel (Aq). For an arbitrary vectorXq in TqQ, the horizontal
part isXh

q = Xq −A (q) ·Xq. Thevertical component lies in the fiber tangent space4 [1]. Given a
local trivialization of the fiber bundleQ = G × Q/G, let the coordinates(g, r) represent the fiber
(group) and base components [1]. For an arbitrary tangent vector, let the components in the local
trivialization be denoted by(ġ, ṙ). The connection is represented in local coordinates asA = ωa ∂

∂ga

(usingsummation notation), where

ωa (q) = dga +Aaα (r, g) drα . (A.2)

The vertical projection is locally given by(ġa, ṙα) 7→ (ġa +Aaα (r, g) ṙα, 0). Locally, the horizon-
tal projection is given by(ġa, ṙα) 7→ (−Aaα (r, g) ṙα, ṙα). The term−Aaα (r, g) ṙα represents the
components of motion along the fiber group that are induced by motion in the base space.

For purely kinematic systems, the number of independent nonholonomic constraints is equal to
the dimension of the fiber space. If the horizontal space is defined to be the constraint distributionDq

that is the set of admissible velocitiesDq = horq, then the connection one-formA(q) is uniquely
determined by the nonholonomic constraints [1, 112]. The base variables are directly controlled
such thaṫr = f (u) or r̈ = f (u). Then, given the base velocitiesṙ, the fiber velocities are uniquely
determined bẏga = −Aaα (r, g) ṙα; in this thesis, we will use a more compact notationġ = A (q) ṙ.
Note that even though the systems are called purelykinematic, the system can have second order
dynamics on the base space.

3Herewe follow the literature and abuse notation to useA as both the Pfaffian constraint distribution and the derived
connection [1]. The reason for this abuse will become apparent.

4Note, horizontal and vertical are somewhat misleading terms, the vectors are not orthogonal for constrained systems.

c© 2007 David C. Conner 129

The connection provides a convenient form for deriving the equations ofmotion; unfortunately,
the constraints of some systems (e.g. the Ackermann steered car) do not have the simple form
given in (A.2). This makes determining the connection more difficult. To simplify, the concept
of a principal connectionis introduced. The principal connection requires that the system have
certain invariance properties, orsymmetries[1, 90]. The formal definition requires some additional
terminology related to the fiber Lie group.

Recall, that aprincipal fiber bundleis a fiber bundle such that the fibersF = π−1 (b) are
everywhere homeomorphic to a structure groupG [1]. Given a projectionπ : Q → Q/G, where
Q/G corresponds to the base spaceB, andQ = Q/G×G everywhere,Q (Q/G,G, π) is a trivial
principal fiber bundle. For a point in the configuration spaceq = (h, r), with h ∈ G andr ∈ B, the
left action of a group elementg ∈ G corresponds to motion along the fiber given asLgq = (gh, r).
The right action is given byRgq = (hg, r). The Lie algebra,g, of the Lie group is the tangent
space at the identity element, that isg = TeG. The lifted actionTqΦg (vq) on vq ∈ TqQ gives
the vector atΦg (q) obtained by parallel transport ofvq by the actionΦg. The short-hand notation,
g−1ġ, is used to represent the actionTgLg−1 (ġ), which returns the velocity in body coordinates,
ξb = g−1ġ ∈ g. The infinitesimal generator of the action corresponding toξ ∈ g, denotedξG,
generates a vector field overG according toξG (h) = d

dt
(exp (ξt) · h) |t=0 for all h ∈ G. For trivial

principal bundles,ξG (h) = TeRhξ [90]. At a given pointq = (g, r) ∈ Q, ξQ(q) = (TeRg (ξ) , 0).
The adjoint operator,Adg : g → g, is given byAdg = Tg−1Lg ◦ TeRg−1 . The group orbit is
Orb (q) = {gq | g ∈ G}; the orbit is an immersed sub-manifold. The orbit tangent space is given
by the generators at the point; that isTqOrb (q) = {ξG (q) | ξ ∈ g}.

Each of these abstract operators has a concrete representation for systems whose structure group
G is SE(2). An element of the group,g ∈ SE(2), is represented as a3 × 3 matrix

g =

cos θ − sin θ x
sin θ cos θ y

0 0 1

 ∈ SE(2) .

Elements of the group represent both body configurations and rigid body motions on another group
element. The composition of two elements is simple matrix multiplication. Thus, forg, h ∈ SE(2),
Lgh = gh andRgh = hg. The body velocityξb = [ξx ξy ξω]T is represented as a Lie algebra
element by the matrix

ξ =

0 −ξω ξx
ξω 0 ξy
0 0 0

 ∈ se(2) .

The velocity in world coordinates is given byġ = gξ. As in the literature, we will intermingle the
use of 3-tuples to represent elements of the matrix Lie group and algebra. Givenh = [hx, hy, hθ]

T ∈

130 c© 2007 David C. Conner

SE(2), the group actionLg , whereg = [x, y, θ], yields

Lgh =

cos θ − sin θ x
sin θ cos θ y

0 0 1

coshθ − sinhθ hx
sinhθ coshθ hy

0 0 1

=

cos (θ + hθ) − sin (θ + hθ) x+ hx cos θ − hy sin θ
sin (θ + hθ) cos (θ + hθ) y + hx sin θ + hy cos θ

0 0 1

 (A.3)

∼=

x+ hx cos θ − hy sin θ
y + hx sin θ + hy cos θ

θ + hθ

To obtain the mapping for the lifted actionThLg : ThSE(2) → TghSE(2), we differentiate the
vector form ofLgh with respect to the group coordinates to yield

ThLg =

{

∂Lg
∂hi

}

=

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 . (A.4)

Similarly, the lifted right actionThRg : ThSE(2) → ThgSE(2) is given by

ThRg =

1 0 −y coshθ − x sinhθ
0 1 x coshθ − y sinhθ
0 0 1

 . (A.5)

For matrix groups,Adg (ξ) = gξg−1. Forse(2), the matrix that encodes the adjoint operator is

Adg =

cos θ − sin θ y
sin θ cos θ −x

0 0 1

 . (A.6)

This matrix operates on the vector form ofξ.
Given these Lie group and Lie algebra actions, we now return to defining the principal connec-

tion for purely kinematic systems.
A principal connection,A, is a mapA : TqQ → se(2) such that

A(ξQ(q)) = ξ, ∀ξ ∈ g, q ∈ Q

A(TqΦg(vq)) = AdgA(vq) .

[1]. This last property requires that the principal connection is invariant under the group actiong.
The horizontal spaceof the connectionA at q ∈ Q is horq = {vq ∈ TqQ | A (vq) = 0}, and

TqQ = horq ⊕ verq. Thus, forvq ∈ TqQ we have the decompositionvq = horqvq + verqvq, where

verqvq = (A (vq))Q(q) . (A.7)

From the definition of an infinitesimal generator,(A (vq))Q(q) is the vector atq generated by
the Lie algebra elementA (vq). The horizontal part ofvq is given ashorqvq = vq − (A (vq))Q(q).
The connectionA is related to the principal connection asA (vq) = (A (vq))Q(q).

c© 2007 David C. Conner 131

The principal connection provides a simple method of determining the connection [1]. The
connection in the local trivialization is

A (ġ, ṙ) = Adg
(

TgLg−1 ġ + A (r) ṙ
)

, (A.8)

whereA represents the local connection determined by the constraints at the identity of the group.
Appendix subsections A.4.2 and A.4.3 provide specific examples of these ideas.

Given these preliminaries, we may now define the class of systems used in this thesis. Aprinci-
pally kinematic systemis a system where

• the tangent spaceTqQ is the direct sum of the constraint distributionDq and the tangent to
the group orbits; that isTqQ = Dq + TqOrb (q).

• Dq

⋂

TqOrb (q) = {0}.

• the LagrangianL, the difference between kinetic energy and potential energy of the system,
is invariant under the group action ofG onT Q.

• the constraint distributionD is invariant, that is givenDq ⊂ T Q thenTgDq = Dgq ⊂ TgqQ.

The first two conditions apply to purely kinematic systems. The constraint distribution,Dq, defines
the horizontal space for the connection; the group orbits define the vertical space. Together they span
the configuration tangent space. As stated earlier, this choice uniquely specifies the connection.

The last two conditions specify the invariance properties that differentiate betweenprincipally
kinematicandpurely kinematicsystems. In the literature, the terms are often used interchange-
ably [1]. In this thesis, we will make a distinction between the two terms, as in [90]. Any principally
kinematic system is purely kinematic; but the reverse is not true. In Appendix A.4.4 we provide an
example of a system that is purely kinematic; that is, it has a kinematic mapping between base and
fiber velocities, but lacks the invariance properties and is therefore NOT principally kinematic.

The remainder of this appendix presents detailed derivations of the equations of motion for the
systems used in this thesis.

A.4 Examples

A.4.1 Vertical Rolling Disk (Unicycle)

The kinematic unicycle model presented in Appendix A.2 did not have a base variable, and hence,
does not fit into the fiber bundle framework. However, by considering the rotation of a drive wheel,
the model does fit. This more complex model, called thevertical rolling disk, is suitable for mod-
eling second order dynamics where the accelerations are the control inputs, and not{v, ω} as in
Appendix A.2.

Consider the example vertical rolling disk shown in Figure A.3 [1, 90]. The disk moves over the
plane, with a configuration space ofSE(2). We representSE(2) using a local chart(x, y, θ) ⊂ IR3,
where(x, y) are the coordinates of the point of contact on the plane andθ is the orientation of the
disk with respect to thex-axis of the plane. The angle of rotation about a horizontal axis through
the disk center, with respect to the vertical, isψ. Let the local configuration be given as the vector
q =

[

x y θ ψ
]T

. The system is controlled by (imaginary) motors that provide torque about both
the vertical and horizontal axes of rotation, which provides control ofθ andψ directly. Therefore,

132 c© 2007 David C. Conner

ψ

(x, y) θ

Figure A.3: Vertical rolling disk with(θ, ψ) as base variables.

the base variables are designated as(θ, ψ), with projection

π (q) =

[

0 0 1 0
0 0 0 1

]

· q .

The fiber variables,(x, y), are a group under the action of translation.
The disk rolls without slipping, which constrains the instantaneous velocity of the point of

contact to be zero, and yields the following constraints

ẋ−R ψ̇ cos θ = 0 , (A.9)

ẏ −R ψ̇ sin θ = 0 . (A.10)

In Pfaffian form, the constraints are
[

1 0 0 −R cos θ
0 1 0 −R sin θ

]

· q̇ = 0 . (A.11)

For this simple system, we can rewrite (A.9) and (A.10) to obtain equations that specify the re-
lationship between the base variable velocities and the fiber velocities,ẋ = R cos (θ) ψ̇ and
ẏ = R sin (θ) ψ̇. Thus, given a specification of the base velocity,ψ̇, and base variable,θ, the
evolution of the fiber is strictly first order; that is the fiber variables are kinematic with respect to
the base variables. This is the fundamental nature of purely kinematic systems.

While the equations of motion are easily derived for this simple case, we will derive the con-

nection from first principles to illustrate the base/fiber paradigm. Letq̇ =
{

ẋ, ẏ, θ̇, ψ̇
}

∈ TqQ be an

arbitrary velocity vector. The Pfaffian constraints for the vertical rolling disk, given in (A.11), have
the simple form given in (A.2). The corresponding connection one-forms in coordinates are

ω1 = dx−R cos θ dψ

ω2 = dy −R sin θ dψ

The components of the local connection are extracted asA1
2 = −R cos θ andA2

2 = −R sin θ; the
remaining terms are zero. The horizontal part of the arbitrary velocity vector is

horq q̇ =
[

R ψ̇ cos θ R ψ̇ sin θ θ̇ ψ̇
]T

c© 2007 David C. Conner 133

, and the vertical part is

verq q̇ = q̇ − horq q̇ =
[

ẋ−R ψ̇ cos θ ẏ −R ψ̇ sin θ 0 0
]T

.

Note that the horizontal vector, as given, obeys the Pfaffian constraints; therefore,horq q̇ ∈ Dq,
the constraint distribution. Thus, the horizontal part, which encodes the motion induced by the
base motion, is inherently consistent with the constraints. The vertical part encodes any remaining
portion of the arbitrary velocity that is inconsistent with the constraints. This remaining portion
represents the group action independent of base motion that occurs along the fiber tangent vector;
such independent motion may be due to a disturbance beyond the system control.

Formally, the connectionA : TqQ → TqF is used to define the horizontal and vertical spaces. In
this thesis, we are mainly concerned with the mapping between base velocities and fiber velocities,
where the base velocities are driven by the system inputs. Thus, we abuse notation an useA (q) :
TqB → TqG to denote the more compact mapping where the terms are taken directly from the
connection. For the vertical rolling disk,ġ = A (q) ṙ with

A (q) =

0 R cos θ
0 R sin θ
1 0

 . (A.12)

Note the similarity to (A.1) if we letv = Rψ̇ andω = θ̇.

A.4.2 Differential-drive System

A common mobile robot platform is a differential-drive system. The body of the robot is driven by
two independently controlled wheels. By controlling the relative speeds between the two wheels,
the system can control both its forward velocity and the rate of body rotation.

The body of the robot moves across the plane, with a configuration space ofSE(2). Locally,
we representSE(2) as (x, y, θ) ⊂ IR3, where(x, y) are the coordinates of midpoint of the line
connecting the drive wheel centers, andθ is the orientation of the body with respect to thex-axis
of the plane. This arrangement is shown in Figure A.4. The angles of rotation of the drive wheels
about a horizontal axis through the wheel centers is denotedψL andψR, whereL andR denote the
left and right wheels relative to the body heading. Positive rotation moves the vehicle forward. The
local configuration isq =

[

x y θ ψL ψR
]T ∈ SE(2) × S1 × S1.

The vehicle is subject to four nonholonomic constraints, three of which are independent. Each
drive wheel is assumed to roll without slipping and is prevented from sliding sideways relative to
its instantaneous heading. The sliding sideways constraints are redundant. In Pfaffian form, these
independent constraints are

sin θ − cos θ 0 0 0
cos θ sin θ −c −R 0
cos θ sin θ c 0 −R

 · q̇ = 0 .

These constraints are not in the simple form given in (A.2). While it is possible to derive these
equations of motion using algebra, we will take recourse to the principal connection. We first

134 c© 2007 David C. Conner

ψR
O

(x, y)

θ

c
c

Figure A.4: Differential drive robot with two drive wheels{ψL, ψR} as base variables.

rewrite the constraints at the fiber identity element as

0 −1 0 0 0
1 0 −c −R 0
1 0 c 0 −R

 ·
[

ξ
ṙ

]

= 0 .

Using simple algebra, these constraints are equivalent to

0 −1 0 0 0

1 0 0 −R
2 −R

2

0 0 1 R
2c − R

2c

 ·
[

ξ
ṙ

]

= 0 . (A.13)

The constraints in (A.13) are in the simple form given in (A.2), which allows us to directly write
the connection termsA1

1 = −R
2 , A

1
2 = −R

2 , A
2
1 = 0,A2

2 = 0, A
3
1 = R

2c , andA
3
2 = −R

2c , or more
compactly as

A (r) =

−R
2 −R

2
0 0
R
2c − R

2c

 (A.14)

Given this unique specification, (A.7) and (A.8) determine the projection in local coordinates
onto the vertical spaceverq; this yields

verqvq = verq (ġ, ṙ) =
(

TeRg
(

Adg
(

TgLg−1 ġ + A (r) ṙ
))

, 0
)

.

The principal connection for the diff-drive system is

A (ġ, ṙ) =

cos θ − sin θ y
sin θ cos θ −x

0 0 1

ẋ cos θ + ẏ sin θ
ẏ cos θ − ẋ sin θ

θ̇

+

−R
2 −R

2
0 0
R
2c − R

2c

[

ψ̇L
ψ̇R

]

=

ẋ+ y θ̇

ẏ − x θ̇

θ̇

+

cos θ − sin θ y
sin θ cos θ −x

0 0 1

−R
2 −R

2
0 0
R
2c − R

2c

[

ψ̇L
ψ̇R

]

. (A.15)

c© 2007David C. Conner 135

In se(2), the generator operator is

TeRg =

1 0 −y
0 1 x
0 0 1

 ;

therefore, the vertical component is

verqvq = {TeRgA (ṙ, ġ) , 0}

=

1 0 −y
0 1 x
0 0 1

ẋ+ y θ̇

ẏ − x θ̇

θ̇

+

cos θ − sin θ y
sin θ cos θ −x

0 0 1

−R
2 −R

2
0 0
R
2c − R

2c

[

ψ̇L
ψ̇R

]

0
0

=

ẋ
ẏ

θ̇

+

−R
2 cos θ −R

2 cos θ

−R
2 sin θ −R

2 sin θ
R
2c − R

2c

[

ψ̇L
ψ̇R

]

0
0

(A.16)

andthe horizontal part is

horqvq = vq −A (ṙ, ġ)Q (q)

=

ẋ
ẏ

θ̇

ψ̇L
ψ̇R

−

ẋ
ẏ

θ̇
0
0

−

−R
2 cos θ −R

2 cos θ

−R
2 sin θ −R

2 sin θ
R
2c − R

2c

[

ψ̇L
ψ̇R

]

0
0

(A.17)

=

R
2 cos θ R

2 cos θ
R
2 sin θ R

2 sin θ

− R
2c

R
2c

[

ψ̇L
ψ̇R

]

ψ̇L
ψ̇R

=

R
2 cos θ R

2 cos θ
R
2 sin θ R

2 sin θ

− R
2c

R
2c

1 0
0 1

[

ψ̇L
ψ̇R

]

.

As this horizontal vector encodes the admissible velocity induced by the base velocities, we will
abuse notation and letA (q) represent the uniquehorizontal lift from the base velocities to the
configuration velocities derived from the Pfaffian constraints.

For diff-drive this thesis useṡg = A (q) ṙ, with

A (q) =

R
2 cos θ R

2 cos θ
R
2 sin θ R

2 sin θ

− R
2c

R
2c

 . (A.18)

136 c© 2007David C. Conner

A.4.3 Ackermann Steered Car-like System

Considerthe rear-wheel drive system shown schematically in Figure A.5-a. This car-like system
has four wheels in contact with the ground. The model used in this thesis ignores body dynamics
and the effects of tire/ground interaction, and assumes that each wheels rolls without slipping or
sliding sideways. The two rear wheels provide the motive force via traction with the ground, while
the two front wheels provide steering. The vehicle body moves in the plane as it rotates about the
instantaneous center of rotation(i.c.r.), which lies at the intersection of the perpendicular bisector to
each wheel. The rolling without slipping constraints force each wheel to rotate at slightly different
speeds according to the distance from the i.c.r. The angle of each front wheel is slightly different
so that the bisectors intersect the rear axle line at the i.c.r. This type of steering, called Ackermann
steering, prevents slipping of the wheels, which increases drag and wearing of the tires.

Typically a single motor provides torque to both drive wheels, and the angular velocity of each
drive wheel is related by a set of gears called thedifferential. To simplify the model, this mo-
tor/differential pair is modeled as a single drive wheel located along the medial axis of the vehicle,
as shown in Figure A.5-b. This imaginary wheel rotates about its axle by an angleψ. The steering
angle of each wheel is controlled by a single steering wheel, with a mechanical linkage coupling
each front wheel. In the simple model, a single front wheel, with a steering angleφ, is used to
represent the steering input. Because the distance,L, between contact points has not changed and
the i.c.r has not changed, the motion of the two-wheeled vehicle is kinematically equivalent to the
motion of the four-wheeled car-like vehicle.

The configuration space has two parts. Locally the body pose is given byg = {x, y, θ}, where
(x, y) is the location of the midpoint of the rear axle with respect to a global coordinate, andθ
is the orientation of the body with respect to thex-axis. The body pose evolves on theSE(2)
manifold. The configuration of the drive wheel isψ ∈ S

1; and that of the steering wheel isφ ∈ I =
(−φmax, φmax), a bounded interval. Thus globally, the configuration space isQ = SE(2)×S

1× I.
The rolling without slipping or sliding constraints give three independent constraints. Both the

front and rear wheels are prevented from sliding transverse to the rolling direction, which gives

ẋ sin θ − ẏ cos θ = 0 (A.19)

(x, y)

θ

φL
φR

O

L

i.c.r.

ψR

a) Car-like system with Ackermann steering

(x, y)

θ

φ

O

L

i.c.r.

ψ

b) Simplified model

Figure A.5: Car-like system with Ackermann Steering. The figure on the right represents an equiv-
alent simplified model.

c© 2007 David C. Conner 137

and
ẋ sin (θ + φ) − ẏ cos (θ + φ) − Lθ̇ cosφ = 0. (A.20)

The rear drive wheel is assumed to not slip along its rolling direction, that is it does not spin freely.
This gives a constraint of

ẋ cos θ + ẏ sin θ −R ψ̇ = 0, (A.21)

whereR is the drive wheel radius. These are Pfaffian constraints, and may be represented as

sin θ − cos θ 0 0 0
sin (θ + φ) − cos (θ + φ) −L cosφ 0 0

cos θ sin θ 0 −R 0

 · q̇ = 0 ,

whereq̇ =
[

ẋ ẏ θ̇ ψ̇ φ̇
]T

.
Car-like systems are often modeled using a drift-less kinematic model, where the drive wheel

configuration is dropped. The rear forward velocity,v, is specified as one control input, and the
steering rate,ω, is the second input. Forq =

[

x y θ φ
]T

, the model becomes

q̇ =

cos θ
sin θ
tanφ
L

0

v +

0
0
0
1

ω . (A.22)

With this model, the control vector fields in (A.22) annihilate the constraints given in (A.19) and (A.20).
With the kinematic model, the constraint in (A.21) is implicit. This is the model for car-like sys-
tems given most often in the robotics literature [72, 94]. Straightforward calculations show that this
drift-less model is small-time locally controllable [94]. Although simpler, this model loses some
modeling freedom, specifically that of considering dynamical effects. Thus, this thesis considers
the more general purely kinematic model.

Returning to the full configuration spaceQ = SE(2) × S
1 × I, we note that the drive and

steering angles are controlled, so let the base spaceB = S
1 × I and the fiber spaceG = SE(2).

Unfortunately, the system constraints lack the simple form give in (A.2), which prevents us from
directly defining the connection as in the first example.

It is possible, from inspection and some careful algebra, to derive the decomposition without
recourse to the principle connection. We present that result here to show the form, and then derive
the connection from first principles using the connection. For an arbitrary velocity vector,vq ∈ TqQ,
can be decomposed as

vq =

ẋ
ẏ

θ̇

ψ̇

φ̇

=

R ψ̇ cos θ

R ψ̇ sin θ
R
L
ψ̇ tanφ

ψ̇

φ̇

+

ẋ−R ψ̇ cos θ

ẏ −R ψ̇ sin θ

θ̇ − R
L
ψ̇ tanφ
0
0

= hor vq + ver vq , (A.23)

the horizontal and vertical components [59]. As a purely kinematic system, the horizontal part
obeys the constraints, with the fiber velocity portion given as a purely kinematic relation with the
base variable velocities.

138 c© 2007 David C. Conner

Using first principles, we now derive the connection formally. At the group identityelement,
the constraints given in (A.19)-(A.21) for the car-like system are

ẏ = 0 , (A.24)

ẋ sinφ− ẏ cosφ− Lθ̇ cosφ = 0 , (A.25)

and
ẋ−R ψ̇ = 0. (A.26)

Substituting (A.24) and (A.26) into (A.25), and simplifying we obtain

θ̇ − R

L
ψ̇ tanφ = 0 . (A.27)

Taking (A.24), (A.26), and (A.27), which all have the simple form given in (A.2), the local connec-
tion A (r) is given by

A (r) =

−R 0
0 0

−R
L

tanφ 0

 .

Given this unique specification, (A.7) and (A.8) determine the projection in local coordinates onto
the vertical spaceverq; this yields

verqvq = verq (ġ, ṙ) =
(

TeRg
(

Adg
(

TgLg−1 ġ + A (r) ṙ
))

, 0
)

.

The principal connection for the car-like system is

A (ġ, ṙ) =

cos θ − sin θ y
sin θ cos θ −x

0 0 1

ẋ cos θ + ẏ sin θ
ẏ cos θ − ẋ sin θ

θ̇

+

−R ψ̇
0

−R
L
ψ̇ tanφ

=

ẋ−
(

R cos θ + R
L
y tanφ

)

ψ̇ + y θ̇

ẏ +
(

R
L
x tanφ−R sin θ

)

ψ̇ − x θ̇

θ̇ − R
L
ψ̇ tanφ

 . (A.28)

Thegenerator of the connection specifies the vertical vector. Inse(2), the generator operator is

TeRg =

1 0 −y
0 1 x
0 0 1

 .

c© 2007 David C. Conner 139

Therefore, the vertical component is

verqvq = {TeRgA (ṙ, ġ) , 0}

=

1 0 −y
0 1 x
0 0 1

ẋ−
(

R cos θ + R
L
y tanφ

)

ψ̇ + y θ̇

ẏ +
(

R
L
x tanφ−R sin θ

)

ψ̇ − x θ̇

θ̇ − R
L
ψ̇ tanφ

0
0

=

ẋ−R ψ̇ cos θ

ẏ −R ψ̇ sin θ

θ̇ − R
L
ψ̇ tanφ
0
0

(A.29)

andthe horizontal part is

horqvq = vq −A (ṙ, ġ)Q (q)

=

ẋ
ẏ

θ̇

ψ̇

φ̇

−

ẋ−R ψ̇ cos θ

ẏ −R ψ̇ sin θ

θ̇ − R
L
ψ̇ tanφ

0
0

=

R ψ̇ cos θ

R ψ̇ sin θ
R
L
ψ̇ tanφ

ψ̇

φ̇

, (A.30)

asgiven in (A.23).
For the Ackermann steered car, this thesis usesġ = A (q) ṙ, with

A (q) =

R cos θ 0
R sin θ 0
R
L

tanφ 0

 . (A.31)

Theexamples considered thus far – the vertical rolling disk, the differential-drive, and the Ack-
ermann steered car – have been principally kinematic, and therefore, purely kinematic. We now
consider a system that is purely kinematic, but is NOT principally kinematic. The key difference
between the system is the lack of invariance properties.

A.4.4 Diff-drive towing a trailer

Consider the system shown in Figure A.6, which consists of a differential-drive robot towing a
trailer. The trailer body is attached to a rotating joint whose axis intersects the center of the diff-
drive axle. The trailer body extent contains that of the differential-drive body, so the trailer is treated
as the robot body. For this example, the body reference frame is attached to the rotating joint. The

140 c© 2007 David C. Conner

L

ψR
O

(x, y)

θ

φ

c

Figure A.6: Differential-drive robot towing a trailer. The system has two drive wheels{ψL, ψR} as
base variables.

system is driven by the two wheels attached to the differential-drive robot; the trailer has wheels
located a distanceL from the rotation point. Denoting the angle between the differential-drive robot
and the trailer body asφ, the configuration is given byq = (x, y, θ, φ, ψL, ψR).

The system is subject to four independent nonholonomic constraints. Three are the same as the
differential-drive robot: the two drive wheels roll without slipping, and the drive wheels cannot slide
sideways. The fourth is that the wheels on the trailer cannot slide sideways. In Pfaffian form, these
constraints are

sin (θ + φ) − cos (θ + φ) 0 0 0 0
cos (θ + φ) sin (θ + φ) 0 −c −R 0
cos (θ + φ) sin (θ + φ) 0 c 0 −R
− sin θ cos θ −L 0 0 0

· q̇ = 0 .

The number of independent nonholonomic constraints is equal to the dimension of the fiber space;
however, these constraints are not in the simple form given in (A.2).

To see the lack of invariance, we define the fiberF = SE(2) × S
1 ≈ (x, y, θ, φ), and base

B = (ψL, ψR). The fiber is the direct product of two groups; therefore,F is a group. The base
space is defined by the two actuated drive wheels.

Define the matrixA (q), which spans the null space of the Pfaffian constraints, as

A (q) =

R cos(θ+φ)
2

R cos(θ+φ)
2

R sin(θ+φ)
2

R sin(θ+φ)
2

R sin(φ)
2L

R sin(φ)
2L

−R
2c

R
2c

1 0
0 1

.

c© 2007 David C. Conner 141

The matrixA (q) is homeomorphicto the constraint distributionDq ⊂ T Q. The lifted action of
theSE(2) fiber components only act on theSE(2) velocity components; likewise, the lifted action
of the S

1 component only acts oṅφ. Therefore,TgDq 6= Dgq, so the constraint distribution is
not invariant; therefore, the system is NOT principally kinematic. However, by inspection,dq =

A (q) ṙ, whereṙ =
[

ψ̇L ψ̇R
]T

. Therefore, by definition, the system is purely kinematic.
In this case, the constraints and equations of motion are determined by carefully analyzing the

system, and applying algebraic manipulations. The systematic approach available to principally
kinematic systems does not apply. The hybrid control approaches developed in this thesis depend
only uponA (q), and not on a principal connection; therefore, the policy design and planning tech-
niques are directly applicable to a differential-drive towing a trailer. Provided that the trailer body
covers the differential-drive system, and the system extent is treated as a single rigid body.

142 c© 2007 David C. Conner

143

Appendix B

Details of Control Policies For Fully Actuated Systems

This appendix provides details of policy derivations, and proofs of lemmas referenced in Chapter 4.

B.1 Vector Field Design Details

The vector field design presented in Chapter 4 is based on the pull-back of a potential function
defined over a unitn-ball. This section provides details for the general mapping used from arbitrary
convex polytopes ton-balls, and the specific mapping for polygons to the unit disk inIR2. The
section concludes with the derivation of the harmonic potential function used on the disk.

B.1.1 Mapping of Convex Polytopes ton-ball

In this thesis, the basic cells used for fully actuated systems are convex polytopes, which can be
specified by the intersection of a set of half space constraints. It takes a minimum ofn + 1 half
space constraints to boundn-dimensional space. This makes the boundaries easy to specify, and
involves trivial calculations to check a point for inclusion. In lower dimensions, polytopes are the
familiar polygonsin IR2andpolyhedrain IR3.

Each half space constraint is represented by a point,p ∈ IRn, and a unit normal,n ∈ IRn. Define
the normal direction as the outward1 pointing normal with respect to the polytope being defined.
Therefore, the normal direction changes as the system goes from cell to cell across a common face.
Let p be the center of the polytope face being specified by the half space constraint. Note, this is
an over parameterization of the half-space constraint. All that is required is the distance from the
origin, and not a point on the hyper plane. We choose to carryp for use in later transformations.

A necessary condition for the set{(pi,ni) | i = 1, . . . ,m} of half-space constraints to specify
a valid polytope is that the face normalsni positively span the free space. Letβi (q) = −ni ·
(q − pi), the distance from a pointq to the hyperplane defining theith half space constraint. Another
necessary condition is that the center point of each face,pi, is contained in the intersection of the
other half space constraints, that is

∀ i = 1 . . .m , ∀ j = 1 . . .m , i 6= j , βj (pi) > 0 .

If q is an interior point of the cell, thenβi (q) > 0 for all i ∈ 1 . . .m. This allows us to compactly
specify a convex polytopeP as

P = {q ∈ IRn | ∀ i = 1 . . .m , βi (q) > 0} ,
1This is a change in notation from earlier papers, but is consistent with outward pointing normals used for arbitrary

cells in Chapter 5.

assuming that them half-spaceconstraints form a valid polytope. Ifβi (q) = 0 for some, but not
all, of the half space constraints,q is on the boundary of the cell.

Defineqβ such that

qβ = arg max
q∈P

m
∏

i=1

βi (q) ,

and let

βmax =
m
∏

i=1

βi (qβ) .

Thusβmax is the maximum value of the product of distances to each face on the interior of the cell.
Define the scaled distance product functionβ (q) as

β (q) = β
1−m
m

max

m
∏

i=1

βi (q) . (B.1)

Lemma B.1.1 The set of local maxima ofβ (q) on the interior ofP is a singleton. Furthermore,
β (q) is free of local minima on the interior ofP.

Proof: By construction,β (q) is positive over the interior ofP and zero along the boundary ofP.
Thereforeβ (q) has at least on point corresponding to a global maximum on the interior of
P. Let such a point, denotedqβ , be given. Without loss of generality, transform the polytope
such thatqβ is at the origin.

Assume there exists another local maxima on the interior, and denote such point asqm.

Define the line segment between the origin andqm asl (t) = qm t, and note thatβ restricted
to the line segment is given by

β (t) = β (l (t)) = β
1−m
m

max

m
∏

i=1

−ni · (l (t) − pi)

= β
1−m
m

max

m
∏

i=1

(

−n
T
i qm t+ n

T
i pi
)

= β
1−m
m

max

m
∏

i=1

(

ai t+ d0
i

)

(B.2)

whereai = −n
T
i qm, d0

i = n
T
i pi, andt ∈ [0, 1].

The derivative,Dtβ (t), along the line segment parameterized byt is

Dtβ (t) = β
1−m
m

max

m
∑

i=1

ai

m
∏

j=1

j 6=i

(

aj t+ d0
j

)

. (B.3)

144 c© 2007 David C. Conner

The second derivative is

Dttβ (t) = β
1−m
m

max

m
∑

i=1

ai

m
∑

j=1

j 6=i

aj

m
∏

k=1
k 6=i

k 6=j

(

ak t+ d0
k

)

= β
1−m
m

max

m
∑

i=1

ai

m
∑

j=1

j 6=i

aj
1

ai t+ d0
i

m
∏

k=1
k 6=j

(

ak t+ d0
k

)

= β
1−m
m

max

m
∑

i=1

ai
ai t+ d0

i

m
∑

j=1

j 6=i

aj

m
∏

k=1
k 6=j

(

ak t+ d0
k

)

= β
1−m
m

max

m
∑

i=1

(

ai
ai t+ d0

i

Ai

)

, (B.4)

where

Ai =
m
∑

j=1

j 6=i

aj

m
∏

k=1
k 6=j

(

ak t+ d0
k

)

.

qβ andqm areassumed to be local maximum points; thereforeβ (t) must be constant or there
must be a local minima int ∈ (0, 1). In either case,Dtβ (t∗) = 0 for somet∗ ∈ (0, 1). Note,
that

Dtβ (t) |t∗= Ai + ai

m
∏

k=1
k 6=i

(

ak t
∗ + d0

k

)

,

which implies that

Ai = −ai
m
∏

k=1
k 6=i

(

ak t
∗ + d0

k

)

. (B.5)

Substitute (B.5) into (B.4) and simplify to obtain

Dttβ (t∗) = −β
1−m
m

max

m
∑

i=1

a2
i

ai t+ d0
i

m
∏

k=1
k 6=i

(

ak t
∗ + d0

k

)

.

Eachterm in the summation is positive, thereforeDttβ (t∗) < 0, which impliesl (t∗) is a
local maximum. This contradicts the assumption thatβ is constant or has a local minimum
along the line segment. Therefore,qm must equalqβ , and there is a single local maximum
on the interior ofP. Sinceβ is positive over the interior ofP, and there is only one local
maximum on the interior, there cannot be a local minimum in the interior.

c© 2007 David C. Conner 145

2

FromLemma B.1.1, conclude thatβ (q) monotonically decreases asq approaches the boundary
of P along a ray fromqβ in all directions.

Given the specification of a valid convex polytope, we construct a mapping to the unit ball using
the scaled distance product,β (q). First, note that the desirable properties of the constructed vector
fields are invariant under rigid body transformation. LetT be the rigid body motion that transforms
the cell so that the pointqβ is at the origin, and the center point,p, of the designated outlet face
lies on the negativex1 axis. Such an operator maps face points to face points, and face normals
to face normals. Unless otherwise noted, henceforth assume that the cell is transformed such that
pi = T (pi), ni = T (ni), andq = T (q) ∈ T (P).

Given a convex polytopeP and transformationT , defineϕ : T (P) → B as

ϕ (q) =
q

‖q‖ + β (q)
, (B.6)

whereβ (q) : T (P) → IR is given in (B.1). The scaling termβ
1−m
m

max in β (q) makes the mapping
invariant to scale. The mapping in (B.6) maps the origin to the origin, and any point on the boundary
to the(n− 1)-sphere.

The Jacobian matrix,Dqϕ, is given byDqϕ =
[

Dxjϕi
]

, wherexj is thejth component ofq,
andϕi is theith component ofϕ (q). Each element of the Jacobian is

Dxjϕi =
δi,j

‖q‖ + β (q)
− ϕi

(‖q‖ + β (q))2
(

Dxj ‖q‖ +Dxjβ (q)
)

=
δi,j

‖q‖ + β (q)
− ϕi

(‖q‖ + β (q))2

(

ϕj
‖q‖ +Dxjβ (q)

)

. (B.7)

where

δi,j =

{

1 i = j
0 otherwise

.

Note, when‖q‖ = 0, ϕi = ϕj = 0, and

lim
‖q‖→0

Dxjϕi =
δi,j

β
1
m
max

.

The distance function partial derivative is

Dxjβ (q) = β
1−m
m

max

m
∑

i=1

−ni,j

m
∏

k=1
k 6=i

βk (q)

, (B.8)

whereni,j is thejth component of theith normal vector.

Lemma B.1.2 The mappingϕ is full rank on the interior of the cellP.

A sketch the proof is given for arbitrary dimensions; a detailed proof is given later for 2D.

Proof: (Sketch) The mappingϕ is designed to preserve angles relative to the origin, and scale
the radial component. Consider the spherical coordinate representation of the mapping. The

146 c© 2007 David C. Conner

Jacobian has diagonal 1’s for the angle coordinates. In order for the mappingto be singular,
the partial derivative of the radial scaling with respect to the radius must be zero.

Let qI be the point of intersection with the boundary, along the ray from the origin through
the arbitrary pointq in the interior ofP. This relationship is shown in Figure B.1. The radial
scaling is given by

r (t) =
ρ t

ρ t+ β (qIt)
,

whereρ = ‖qI‖, andt ∈ [0, 1]. Then,

Dtr (t) =
ρ

(ρ t+ β)
− ρt (ρ+Dtβ)

(ρ t+ β)2

=
ρ (ρ t+ β)

(ρ t+ β)2
− ρt (ρ+Dtβ)

(ρ t+ β)2

=
ρ (β − tDtβ)

(ρ t+ β)2
,

whichonly equals zero when
β − tDtβ = 0 .

However, by Lemma B.1.1,β is monotonically decreasing as we move along the ray param-
eterized byt, so thatDtβ < 0. Sincet ≥ 0 andβ > 0 over the interior ofP,

β − tDtβ > 0

for all q ∈ P. Therefore, the Jacobian in spherical coordinates is full rank.

The mapping from Cartesian to spherical coordinates is full rank, except at the origin, where
a proper limit for this mapping exists. Therefore, as the Jacobian is full rank everywhere on
the interior, the mappingϕ is full rank over the interior ofP [8].

2

The mapping fails to beC∞ at the origin due to the use of the radial retraction. However, this
isolated discontinuity can be accommodated by a local smoothing function.

q

0

qI

Figure B.1: The pointq and origin determine a point of intersectionqI in the linear retraction
mapping.

c© 2007 David C. Conner 147

Mapping to a Unit Disk

The simulations presented in this thesis are for systems evolving onIR2, therefore this section
presents the specifics for the mapping of polygons to the unit disk.

From (B.6),

ϕ (q) =

(

x
√

x2 + y2 + β (q)
,

y
√

x2 + y2 + β (q)

)

. (B.9)

TheJacobian,Dqϕ, is

Dqϕ =
1

(

√

x2 + y2 + β (q)
)2

y2√
x2+y2

+ β (q) − xDxβ (q) − xy√
x2+y2

− xDyβ (q)

− xy√
x2+y2

− yDxβ (q) x2√
x2+y2

+ β (q) − yDyβ (q)

(B.10)

Lemma B.1.3 The mappingϕ given in (B.9) from an arbitrary polygon to the unit disk is full rank
everywhere on the interior of the polygon.

Proof: If q = 0, then a simple limit operation yields

Dqϕ |q=0=

1

β
1
m
max

0

0 1

β
1
m
max

 ,

which is full rank. Assume,‖q‖ 6= 0, and consider the determinant ofDqϕ,

Det (Dqϕ) = −

(

x2 + y2 +
√

x2 + y2 β (q)
)

(−β (q) + xDxβ (q) + y Dyβ (q))

√

x2 + y2
(

√

x2 + y2 + β (q)
)4 .

(B.11)

The denominator and the first term in parenthesis in the numerator are positive, non-zero
numbers for‖q‖ > 0. Therefore, to lose rank, the second term,−β (q) + xDxβ (q) +
y Dyβ (q) must be zero. Assume this is true for someq = (x, y) ∈ P. Then,

β (q) = Dqβ (q) q . (B.12)

However, by Lemma B.1.1,β (q) is monotonically decreasing as we move along the ray
throughq originating at the origin. Therefore,Dqβ (q) q < 0 for all q ∈ P, whileβ (q) > 0,
contradicting (B.12). Therefore, the determinant is non-zero.

2

The mapping is singular on the boundaries, and in fact, the Jacobian is the zero matrix at a vertex
of the polygon. This necessitates an approximation of the cell near the polygon vertices; see [26]
for an approach that uses fillet curves.

Mapping Unit Disk to Unit Disk

The convergent vector field design requires a diffeomorphismψ : B\qbg → B\0 between a unit disk
mapped from the polygon and a unit disk whose origin corresponds to the goal. The mappingψ

148 c© 2007 David C. Conner

maps boundary to boundary and goal to origin; that isψ(∂B) = ∂B andlimq→qg ψ
(

qbg
)

= 0, where
qbg = ϕ (q).

For the unit disk, a mapping based on complex numbers serves the purpose. Letz = qb = ϕ(q)
be an arbitrary point in the unit disk represented in complex plane. Letzg = qbg = ϕ(qg) be the goal
point in the complex plane. Then

zψ = ψ(z) =
z − zg

1 − z̄g · z
, (B.13)

wherez̄g is the complex conjugate ofzg. Clearly,zψ = 0 if z = zg. Simple algebraic calculations
show that the boundary maps to the boundary.

B.1.2 Harmonic Functions on a Unit Disk

Given the mappingϕ from above, and a potential function,γb, on the unit ball, define the potential
over the polytope as the pullback given by

γ = γb ◦ ϕ .

The potential function on the unit ball is based on a harmonic potential function, which is a solution
to Laplace’s equation

∇2γb =
∂2γb
∂x1

2
+ · · · + ∂2γb

∂xn2
= 0 . (B.14)

The harmonic potential function has several “nice properties” relevant to this work; there are no
interior local minima and the solution isC∞ smooth [35, 106].

On the unitn-ball, the solution is a computable integral function; on the unit disk with piecewise
continuous boundary conditions the solution exists in closed form [35, 106]. Letqd = ϕ (q) =
(xd, yd) be the Cartesian coordinates of a point in disk mapped from a point in the polygon. For the
disk, the most natural representation is in polar coordinates, so define

ρ =
√

x2
d + y2

d ,

θ = atan2 (yd, xd) .

ϕ
α1

α0Outlet

(a)

−π πα0
ζ

∆ζ ∆ζ

α1

(b)

Figure B.2: Generating potential on polygon. a) Mapping from polygon to disk with outlet zone
identified. b) Discontinuous boundary conditions approximated by continuous functions as∆ζ →
0.

c© 2007 David C. Conner 149

If the boundary condition is 0 along the outlet zone, and 1 along the inlet zone,the solution to
Laplace’s equation on the unit disk inIR2 is

γb (ρ, θ) =
α1 − α0

2π
+

1

π
tan−1

(

ρ sin (α1 − θ)

1 − ρ cos (α1 − θ)

)

− 1

π
tan−1

(

ρ sin (α0 − θ)

1 − ρ cos (α0 − θ)

)

, (B.15)

whereαi denotethe angle coordinates of the vertices of the outlet face. Figure B.2 shows the
mapping and boundary condition used in solution. Except for the discontinuities at(ρ, θ) = (1, α0)
and(ρ, θ) = (1, α1), (B.15) obeys Laplace’s equation and satisfies the boundary conditions. To
calculate the gradient, differentiate (B.15) in terms ofxd andyd and simplify to yield

Dqdγb =

− sin(α)+sin(β)+ρ (2 cos(θ) sin(α−β)+ρ (− sin(α−2 θ)+sin(β−2 θ)))
π (1+ρ2−2 ρ cos(α−θ)) (1+ρ2−2 ρ cos(β−θ))

cos(α)−cos(β)+ρ (−(ρ cos(α−2 θ))+ρ cos(β−2 θ)+2 sin(α−β) sin(θ))
π (1+ρ2−2 ρ cos(α−θ)) (1+ρ2−2 ρ cos(β−θ))

T

. (B.16)

The gradient of the potential in the polygon isDqγ = DqdγbDqϕ, which is all that is needed to
calculate the negative normalized gradient vector fieldX̂.

B.2 Component Policy Design Details

This section provides details for the policy design for second order systems.

B.2.1 Unconstrained Dynamics Control Policy

Recall from Section 4.1.2 the second order system of the form

q̈ = u , (B.17)

whereu is unbounded. Using either the convergent or flow-through vector fields as a velocity
reference, the velocity regulation control law is

u = K (X(q) − q̇) + Ẋ(q) , (B.18)

whereK > 0 is the “velocity regulation” gain, which acts to decrease the error and the feed-
forward term,Ẋ(q) = DqX q̇, accounts for the change in the vector field as the system moves in
the q̇ direction [105].

Lemma B.2.1 In the absence of constraints, including those of the cell boundary, the integral
curves of the vector fieldX(q) are attractive to the trajectories of the closed loop system defined by
(B.17) under the influence of (B.18).

Proof: Define the velocity error,e = X(q) − q̇, and consider the set

V := {(q, q̇) | ‖e‖ = 0} .

150 c© 2007 David C. Conner

Define a Lyapunov-like function of the form

ηv =
1

2
e
T
e

=
1

2
(X(q) − q̇)T (X(q) − q̇) (B.19)

Evaluating the time derivative of (B.19) along the trajectories of the closed loop system, and
substituting (B.18) yields

η̇v = (X(q) − q̇)T
(

Ẋ(q) − q̈
)

= (X(q) − q̇)T
(

Ẋ(q) −K (X(q) − q̇) − Ẋ(q)
)

= −K (X(q) − q̇)T (X(q) − q̇) . (B.20)

ForK > 0, η̇v < 0 for all non-zero velocity error; therefore, the setV is both attractive and
invariant. This implies that the velocity error asymptotically approaches zero [105].

2

The orientation error, defined as the angle between the desired velocity,X(q), and the current
velocity, q̇, is given by

ϑ = cos−1 q̇T X
√

q̇T q̇ XTX
, (B.21)

whereX = X(q) and‖q̇‖ > 0; if ‖q̇‖ = 0, then defineϑ = 0.

Lemma B.2.2 In the absence of acceleration constraints, and for initial velocities such thatq̇TX >
0, there exists a lower bound onK such that the orientation error,ϑ, monotonically decreases.

Proof: First, consider the isolated case whereq̇ = 0. Defineϑ |q̇=0= 0, since differentially the
acceleration will be in the direction of the desired velocity and the orientation error will
instantaneously remain zero. As shown below, the orientation error will remain zero for all
time.

Now, assume‖q̇‖ > 0, and consider the set

U := {(q, q̇) | ϑ = 0} .

Define a Lyapunov-like function of the form

ηu = sin2 ϑ = 1 − cos2 ϑ

= 1 − XT q̇ XT q̇

q̇T q̇ XTX
. (B.22)

c© 2007David C. Conner 151

Evaluating the time derivative of (B.22) along the trajectories of the closed loop system,and
simplifying yields

η̇u =

(

XT q̇
)2

(q̇T q̇XTX)2

(

(

2q̇T q̈
)

XTX + q̇T q̇
(

2XT Ẋ
))

− 2
XT q̇

q̇T q̇XTX

(

XT q̈ + q̇T Ẋ
)

=
XT q̇

(q̇T q̇XTX)2

(

2XT q̇ XTX q̇T q̈ + 2XT q̇ q̇T q̇ XT Ẋ+

− 2q̇T q̇ XTX
(

XT q̈ + q̇T Ẋ
))

(B.23)

Substituting (B.18) into (B.23) and simplifying yields

η̇u =
2
(

XT q̇
)

(q̇T q̇XTX)2

[

K
(

(

XT q̇
)2
XTX − q̇T q̇

(

XTX
)2
)

+
(

q̇T q̇
(

XT q̇ −XTX
)

XT Ẋ

+ XTX
(

XT q̇ − q̇T q̇
)

q̇T Ẋ
)]

. (B.24)

Now consider the case whereϑ = 0, that isq̇ is aligned withX(q) so thatq̇TX = ‖q̇‖ ‖X‖.
The leading term is a finite positive number since‖q̇‖ > 0, and‖X‖ > 0 by construction.
All parenthetical terms inside the brackets of (B.24) are zero; to see this substitutekX for q̇
with 0 < k ≤ 1 and simplify. Therefore,̇ηu = 0, which implies that the setU is invariant. In
other words, if the orientation error is zero, it remains zero.

Away fromU , the leading term of (B.24) is positive and bounded, because initiallyq̇TX > 0.
Assuming the system has finite initial velocity and‖X(q)‖ is finite, it follows that the velocity
error is finite; then by Lemma B.2.1, the error magnitude decreases; therefore,‖q̇‖ remains
finite for all time. Rewrite the parenthetical portion of the first parenthetical term in brackets
as

(

(

XT q̇
)2
XTX − q̇T q̇

(

XTX
)2
)

= XTX
(

(

XT q̇
)2 − q̇T q̇

(

XTX
)

)

= XTX
(

(‖X‖ ‖q̇‖ cosϑ)2 − q̇T q̇
(

XTX
)

)

= ‖X‖4 ‖q̇‖2 (cos2 ϑ− 1
)

. (B.25)

This term is clearly negative providedϑ 6= 0, which means that forK > 0 the effect is to
decreaseηu. The second parenthetical term in brackets has an indeterminate sign, but is finite
since all the terms are bounded.

Therefore, forsufficiently largeK, η̇u can be made negative definite if0 <| ϑ |≤ π
2 . This

implies that q̇TX remains positive, and thereforeη̇u is always negative for sufficiently large
K. Sinceη̇u < 0, we conclude thatU is attractive and invariant, and thatϑ monotonically
decreases under the influence of (B.18).

2

152 c© 2007 David C. Conner

To define a composable policy, the policy must also guarantee that the system speedis limited to
‖X(q)‖. This allows prepares tests to be conducted on adjacent policies by comparing the reference
speeds of the vector fields.

Lemma B.2.3 In the absence of acceleration constraints, and for initial velocities such thatq̇TX >
0 and‖q̇‖ ≤ ‖X‖, there exists a lower bound onK such that speed never exceeds the reference
speed; that is‖q̇‖ remains less than‖X‖.

Proof: Given an initial condition where‖q̇‖ ≤ ‖X‖, in order to exceed the desired speed, there
will exist a time at which‖q̇‖ = ‖X‖.

Assume that‖q̇‖ = ‖X‖, and letηs = 1
2 q̇
T q̇. Thechange in speed is

η̇s |‖q̇‖=‖X‖ = q̇T (K (X − q̇) +DqXq̇)

= K
(

q̇TX − q̇T q̇
)

+ q̇DqXq̇

= K
(

‖q̇‖ ‖X‖ cosϑ− ‖q̇‖2
)

+ q̇DqXq̇

= K ‖X‖2 (cosϑ− 1) + q̇DqXq̇ . (B.26)

The first term is clearly negative forK > 0. For the general vector field, the terṁqDqXq̇
is of indeterminate sign, but is finite. Therefore, forsufficiently largeK, η̇s can be made
negative ifq̇ 6= X. If q̇ = X, the termq̇DqXq̇ encodes the change in‖X‖, and the system
follows the desired speed profile.

2

Intuitively, makingK sufficiently large ensures that the control policy is correcting more quickly
than the vector field is changing. Formally, the sufficiently largeK is determined such that

K > max

max
q,q̇

(

q̇T q̇
(

XT q̇ −XTX
)

XT Ẋ +XTX
(

XT q̇ − q̇T q̇
)

q̇T Ẋ
)

(

q̇T q̇ (XTX)2 −XTX (q̇TX)2
) , max

q,q̇ ‖q̇‖=‖X‖

q̇DqXq̇

q̇T q̇ − q̇TX

 .

(B.27)
This is a worst case limit based on the vector field derivative. Note that both the numerator and
denominator of the first term approach zero asϑ → 0 or ‖q̇‖ → 0; therefore, determining a proper
upper bound forK is difficult. In this work,K has been chosen by sampling the state space over
the cell for points with‖q̇‖ < ‖X‖; a reasonable limit exists.

Lemma B.2.4 [Lemma 4.1.2 in Section 4.1.2]In the absence of acceleration constraints, with
sufficiently largeK and initial velocities such that‖q̇‖ = 0, or ‖q̇‖ ≤ ‖X‖ and q̇TX > 0, the
trajectories of the closed loop system defined by (B.17) under the influence of (B.18), converge to
the integral curves of the vector fieldX(q) in such a way that the trajectory never exits the cell
except by the outlet zone and‖q̇‖ ≤ ‖X‖ while the system remains in the policy domain. For
flow-through vector fields, the system trajectory exits the cell in finite time.

Proof: If ‖q̇‖ ≤ ‖X‖ initially, by Lemma B.2.3 one concludes the reference speed is never ex-
ceeded.

For initial velocities such thaṫqTX > 0, we know the orientation error is initially less thanπ2 .
By Lemma B.2.2, for sufficiently largeK the orientation error is monotonically decreasing.

c© 2007 David C. Conner 153

Assume the trajectory exits the cell in theinlet zone,thereby violating the conditional invari-
ance requirement. At the point of departure,q̇TX < 0 given the inward pointing vector field
orthogonal to the cell boundary. This implies thatϑ > π

2 , requiringthat the orientation error
increased along its trajectory. This contradicts Lemma B.2.2.

For flow-through policies, the vector fieldX(q) is nowhere zero over the cell; the system
cannot come to rest and remain stationary, because the system experiences an acceleration
along the vector field. Therefore, the trajectory must leave the cell via the outlet zone under
the influence of (B.18) for the given conditions. The speed is non-zero almost everywhere;
therefore, the system exits the cell in finite time.

Likewise, for convergent policies the vector fieldX(q) is non-zero everywhere except at the
goal, and the system converges to a neighborhood of the goal in finite time.

2

The utility of lemmas B.2.2 and B.2.4 is limited by two factors. First, a large value forK can
lead to an overly aggressive policy over the cell that may prove troublesome for implementation.
Secondly, and most importantly, all real world systems have acceleration limits, which may very
well be violated by the feed-forward term of (B.18), regardless of the value ofK and the velocity
error.

B.3 Details of Hybrid Control Policies
for Constrained Idealized Dynamical Systems

This appendix provides details of the hybrid control policies introduced in Section 4.1.2. For the
model

q̈ = u , (B.28)

consider the following dynamic constraints,

‖q̇‖2 ≤ Vmax , (B.29)

‖u‖2 = ‖q̈‖2 ≤ Amax . (B.30)

The approach presented in Chapter 4 used a velocity reference scaling and hybrid control policies
defined over individual cells to guarantee convergence without violating the constraints.

From Section 4.1.2, the reference vector field isX(q) = s(q) X̂(q), where

s(q) = min

s∗
⌈⌉

DqX̂
⌈⌉

+ λ
,Vmax

 . (B.31)

154 c© 2007 David C. Conner

with s∗ andλ definedas constants. The spectral norm
⌈⌉

DqX̂
⌈⌉

encodes “slow down while turning.”

The vector field derivative iṡX = DqXq̇, with

DqX = s(q) DqX̂ +Dqs(q) X̂(q)

=
s∗

⌈⌉

DqX̂
⌈⌉

+ λ
DqX̂ −

s∗Dq

⌈⌉

DqX̂
⌈⌉

(⌈⌉

DqX̂
⌈⌉

+ λ
)2 X̂(q)

=
s∗

⌈⌉

DqX̂
⌈⌉

+ λ

DqX̂ −
Dq

⌈⌉

DqX̂
⌈⌉

X̂(q)
(⌈⌉

DqX̂
⌈⌉

+ λ
)

Considerthe limiting case whereu = DqX q̇ and‖q̇‖ < ‖X(q)‖, then

‖u‖ <

s∗
⌈⌉

DqX̂
⌈⌉

+ λ

DqX̂ −
Dq

⌈⌉

DqX̂
⌈⌉

X̂(q)
(⌈⌉

DqX̂
⌈⌉

+ λ
)

s∗
⌈⌉

DqX̂
⌈⌉

+ λ

<
(s∗)2

(⌈⌉

DqX̂
⌈⌉

+ λ
)2

DqX̂ −
Dq

⌈⌉

DqX̂
⌈⌉

X̂(q)
(⌈⌉

DqX̂
⌈⌉

+ λ
)

Thus,being somewhat conservative, let

s∗ ≤ min
q

√
Amax

(⌈⌉

DqX̂
⌈⌉

+ λ
)

√

⌈⌉

DqX̂ − X̂ Dq⌈⌉DqX̂⌈⌉
⌈⌉DqX̂⌈⌉+λ

⌈⌉

. (B.32)

The system can then follow the reference vector field without exceeding the acceleration bound so
long as the speed atq does not exceed s∗

⌈⌉DqX̂⌈⌉+λ .

A hybrid control strategy is used to expand the policy domain; defineΦS , ΦA, andΦT , where
the subscripts S, A, and T refer to “Save,” “Align,” and “Track” respectively. The control policies
obey the prepares relationship

ΦS � ΦA � ΦT .

B.3.1 Save Control Policy

Consider the case where the best the system can do, using all available acceleration, is prevent colli-
sion with the cell boundary. The Save control policy,ΦS , is used to apply all available acceleration
in way that prevents collision with the cell boundariesif it is at all possible. The exact form of the
Save control policy is dependent on the structure of the cell. The work to date has focused on the
use of arbitrary convex polytopes. For a convex polytope,P, the Save control policy developed
by Rizzi [105] has maximal domain. This section presents this Save policy, and develops a new
expression for the savable set defining the domain of the policy. First, the policy is presented in its
basic form; then the switched dynamics induced by the policy are discussed.

The Save control policy,ΦS , applies all acceleration normal to the boundary at the projected
collision point, in order to slow the system and prevent collision if at all possible. The goal of the
policy is to bring the system to rest within a given cell without violating the cell boundaries. Define

c© 2007 David C. Conner 155

q(t)

q̇

−Amaxnc

q (0)

dc

nc

qc

Figure B.3: Collision projection based on current velocity. The acceleration components of the
Save control policy always act to slow the overall speed and push the trajectory away from the point
of imminent collision to a local maximum of the distance to collision. At the local maximum, the
collision normal is aligned with the current velocity.

qc as thecollision pointon the cell boundary along the direction of the current velocity; that isqc is
the point of boundary intersection if no control input is applied (see Figure B.3). Letnc denote the
outward pointing boundary normal at the collision point; this is termed thecollision normal. For
now, under the general position assumption, assume the collision point is contained in one face of
the polytope. That is, the collision does not occur at the intersection of two or more faces of the
polytope. Define the Save control policy,ΦS , as

u = −Amaxnc . (B.33)

The effect of the Save control policy is to accelerate maximally away from the projected collision
point.

The effect ofΦS can be decomposed into a component along the current velocity, and a compo-
nent orthogonal to the current velocity, as shown in Figure B.3. In every case, the component along
the current velocity acts to slow the system down, while the orthogonal component acts to steer the
trajectory away from the closest boundary.

Note that the control policy always acts to maximally decrease the component of velocity to-
wards the shortest collision distance. This pushes the trajectory away from the point of imminent
collision, and locally increases the time to impact. The acceleration away from the point of first im-
pact will continue until the velocity vector is oriented toward the intersection of two or more faces
of the polytope, as shown in Figure B.3. Thus, as the system is accelerating away from the point
of imminent collision, it is accelerating towards another face, until the system velocity is oriented
toward the intersection of two polytope faces. In this case, accelerating in the direction of either
face’s surface normal would decrease the time to impact of at least one of the faces. This introduces
a discrete change in the required acceleration direction.

When the collision point is on the intersection of two or more faces, redefine the collision
normal to be in the positive linear space of the normals of intersecting faces. In the planar case,
where the current velocity is directed toward a vertex, the collision normal is aligned along the
negative direction of the current velocity. In the general case, the collision normal is oriented so that

156 c© 2007 David C. Conner

nc
q
.

n1

n2

n3
Negative linear span

of face normals

Triangular region defines
co-dimension (n-m) hyperplane

Figure B.4: Collision with the intersection of two faces using the Save policy. Face 1 is transparent.
With m = 2 andn = 3, the velocity is contained in a co-dimension 1 plane.

it and the current velocity vector form a co-dimension(n−m) hyper-plane normal to the surface
formed by the intersection of the polytope faces, wheren is the dimension of the configuration
space andm is the number of faces intersecting at the collision point. Figure B.4 shows an example
of this for 3-dimensional configuration space. The acceleration component contained in this co-
dimension(n−m) hyper-plane is by definition normal to the surface formed by the intersection if
the polytope faces. The acceleration pushes the trajectory along the intersection surface towards a
“corner”, formed by intersection with third face. The process continues until the intersection surface
is a point, and the collision normal is oriented directly opposite the current velocity, which drives
the system to rest.

Lemma B.3.1 [Rizzi [105]]The Save control policy,ΦS , is capable of bringing to rest any condi-
tion in T P that can be brought to rest without violating the given constraints.

Proof: Based on [105].

AssumeΦS cannot prevent collision with the boundary for some initial state, and further
assume the existence of another control policyΦ′

S that can prevent collision.

Any boundary violation under the influence ofΦS involves collision with the “nearest” bound-
ary component, that is the boundary component with the shortest time to impact. However,
ΦS acts to maximally increase the time to impact of the nearest boundary component. If
Φ′
S 6= ΦS , thenΦ′

S must not act to maximally increase the shortest time to impact. But ifΦS

cannot prevent the collision, then neither canΦ′
S .

2

c© 2007 David C. Conner 157

Given the proof of correctness, we seek an expression for defining thesavable set for convex
polytopes. The distance,dc, to thecollision plane defined by the collision point and the collision
normal is given by

dc = −nTc (q − pc) ,

wherenc is the collision normal, andpc is a point on the face. Define the collision speed as

sc = nTc q̇ ,

wheresc is the velocity component along the normal to the collision point. The collision speed
encodes how fast the system is approaching the boundary.

The time required to bring the collision speed to zero, using maximum acceleration in the con-
stant direction of the collision normal, is

tb =
sc

Amax
.

The distance covered during the braking maneuver is

db = sc tb −
1

2
Amaxt

2
b =

s2c
2Amax

.

Using these definitions, define the collision avoidance ratio with the initial collision face,ζ1, as

ζ1 =
db
dc
.

Note, that if ζ1 < 1 then collision with the first face can be avoided, whileζ1 > 1 implies that
collision is inevitable.

Now, consider the change inζ1 as time evolves. From the initial point, both the braking distance
db and the collision distancedc decrease by the distance traveled over some differential time period.
Write ζ1 as a function of time, obtaining

ζ1 (t) =
db −

∫ t

0 (sc − Amax τ) dτ

dc −
∫ t

0 (sc − Amax τ) dτ

=
db − sc t+ 1

2Amax t
2

dc − sc t+ 1
2Amax t2

. (B.34)

Here we assume that the cell is a convex polytope, with the collision normal constant over some
finite range, Taking the time derivative of (B.34),

ζ̇1 (t) =
−sc + Amax t

dc − sc t+ 1
2Amax t

− db − sc t+ 1
2Amax t

2

(

dc − sc t+ 1
2Amax t2

)2 (−sc + Amax t)

=
2 (db − dc) (sc − Amax t)
(

dc − sc t+ 1
2Amax t2

)2 . (B.35)

In the time period before the collision,sc − Amax t > 0 anddc − sc t+ 1
2Amax t

2 > 0, there-
fore, the sign ofζ̇1 depends on the relative values ofdb anddc. If dc > db, then the derivative of the
collision ratio is negative, and the collision ratio never increases beyond the unity value signifying
imminent collision. Intuitively, the remaining braking distance goes to zero before the collision

158 c© 2007 David C. Conner

distance, andζ1 → 0. On the other hand, ifdb > dc, ζ̇1 is positive, signifying no recovery. In this
case, the collision distance goes to zero before the braking distance, and the collision ratio “blows
up.” While this proves that the system will not collide with the initial collision face, it fails to prove
that there will not be a collision with any face on the polytope.

A discrete change in collision normal occurs when the velocity is oriented towards the inter-
section of two polytope faces. This discrete change requires a modification to the collision ratio
calculation, as the acceleration is no longer orthogonal to either face. Therefore, although the Save
policy may be able to avoid a first collision face in isolation, collision with the second face may
be unavoidable. As the closed-loop dynamics in response to the constant acceleration are easy to
determine, it is possible to determine the collision ratio when the system velocity is aligned with the
intersection of two or more faces based on the new collision normal.

Let n1 equal the original collision normal defined by projected collision with a single face,
and letp1 denote a location in the associated face. Using the Save policy defined in (B.33), the
closed-loop dynamics are

q(t) = q(0) + q̇(0)t− 1

2
Amaxn1t

2 , (B.36)

q̇(t) = q̇(0) − Amaxn1t . (B.37)

The instantaneous time to collision for the closed loop system is

tc1 = − nT1 (q(t) − p1)

nT1 q̇(t)
.

Likewise, the time to collision with the second face is

tc2 = − nT2 (q(t) − p2)

nT2 q̇(t)
,

wherethe second face is determined by checking the component of velocity orthogonal to the first
face with respect to collision with other faces. Equatingtc1 andtc2 , solve for the time at which the
velocity is oriented toward the intersection of two faces, which we denotet2. Let dc2 denote the
orthogonal distance to intersection of faces 1 and 2. With the redefined collision normalnc, define
the secondary collision ratio as

ζ2 =

(

nTc q̇(t2)
)2

2Amaxdc2
, .

For higher dimension systems, continue these calculations beginning att2, and solving for the
closed-loop response given the new collision normal. The iterations continue until the intersec-
tions of additional faces results in a single vertex point. If at iterationi, the calculated value for
ζi is greater than one, collision is inevitable and the iteration halts. Given the iterations, define the
overall collision ratioζc as

ζc = max
i
ζi .

Section 4.1.2 introduced the notion of thesavable setas the domain of the Save control policy
for a given cell. Given the definition of the overall collision ratioζc, formally define the savable set,
S, as

S = D(ΦSP
) := {(q , q̇) | q ∈ P, ζc < 1} .

c© 2007 David C. Conner 159

The goal set of the Save control policy,G (ΦSP
), is any rest condition within the cell, or more

formally
G (ΦSP

) = {(q , q̇) | q ∈ P , ‖q̇‖ = 0} .
The savable set is positive invariant under the Save control policy because Save does not increase the
collision ratio,ζc, for any state in the savable set. Because the system is always applying negative
acceleration relative to the current velocity, the system comes to rest in finite time.

Lemma B.3.2 [Lemma 4.1.3 in Section 4.1.2]For a given convex polytope and initial velocity such
thatζc < 1, the Save control policy never increasesζc. Therefore,ζc remains less than one, collision
is avoided, and the system remains in the savable setS = D(ΦSP

) := {(q , q̇) | q ∈ P, ζc < 1}
and eventually comes to rest.

Proof: The collision avoidance ratioζc is defined by the worst case. Ifζc = ζ1 < 1, the calculations
associated with (B.35) show that the Save policy will decreaseζi so thatζc remains less than
1. If ζc = ζi < 1 for somei > 1, the calculations are repeated for the defined collision
normal beginning at timeti. Again,ζc is shown to decrease; therefore, the system remains in
the savable set. The system will eventually come to rest, thereby avoiding collision.

2

B.3.2 Align Control Policy

The Align control policy applies maximum acceleration to the system in order to quickly bring the
velocity into the domain of the Track control policy whenever collision with the cell boundaries is
not imminent.

The Align control policy continuously transitions from the Save control policy to a condition
where maximum acceleration is applied along the velocity error vector, which decelerates the system
and turns the velocity toward the desired velocity vector,X(q). The domain of the Align control
policy, given the collision ratio defined above, is

D(ΦA) = {(q , q̇) | q ∈ P , ζc < 1} .

Let

υ = max

(

0,
µ− ζc
µ

)

,

whereµ ∈ (0, 1) is a user defined parameter defining the collision avoidance margin, and define
the Align control policy as

ΦA : u =

Amax
(1−σ(υ))ΦS+σ(υ) ê

‖(1−σ(υ))ΦS+σ(υ) ê‖ q̇TX ≤ q̇T q̇

Amax
(1−σ(υ))ΦS−σ(υ) ˙̂q

‖(1−σ(υ))ΦS−σ(υ) ˙̂q‖ otherwise
, (B.38)

where ê = X(q)−q̇
‖X(q)−q̇‖ , ˙̂q = q̇

‖q̇‖ , andσ : υ → [0, 1] is a transition function withσ (0) = 0 and

σ (1) = 1. Demonstrations in Chapter 4 useσ (υ) =
√
υ.

TheAlign control policy guarantees that the system remains in its domain, as the policy tran-
sitions to the Save control policy action whenζc ≥ µ. Recall that under the Save control policy,
the collision ratioζc is guaranteed to not increase. Therefore, the system will not exit theζc ≤ µ
domain, once the threat of imminent collision is over. Whenζc ≥ µ, the action of the Align policy
is “saving”, whenζc < µ the action is “aligning”.

160 c© 2007 David C. Conner

Because the domain,D(ΦA) ⊂ S, the worst the Align control policy will do is bring the system
to rest. That is, the goal set of the Align control policy,G (ΦA), is

G (ΦA) = {(q , q̇) | q ∈ P , ‖q̇‖ = 0} ,

which prepares the Track control policy. In the normal case, the Align control policy brings the
system velocity orientation towards the desired velocity orientation, while at the same time reducing
the speed of the system. If acceleration along the unit error vector would tend to increase the
velocity, that is wheṅqTX > q̇T q̇, the system switches to accelerate against the current velocity.
In all regions, the Align control policy decreases the system speed, and brings the system to rest in
finite time.

B.3.3 Track Control Policy

The Track control policy brings the system velocity into alignment with the vector fieldX(q) by us-
ing maximum available acceleration and transitioning continuously to the velocity reference control
law. The domain of the Track control policy is

D(ΦT) =
{

(q , q̇) | q̇TX > 0 , ‖q̇‖ ≤ ‖X(q)‖
}

.

Although the Track control policy works for convergent policies, this description will focus on flow-
through style policies. For flow-through policies, the Track control policy must guarantee that the
system trajectory does not exit the cell other than by the outlet zone. The goal of the Track control
policy is

G (ΦT) = {(q , q̇) | q ∈ ∂Poutlet , ‖q̇‖ ≤ ‖X(q)‖} ,
i.e. the system exits via the outlet zone with speed no faster than the desired speed.

To accomplish this goal, the Track control policy monotonically decreases the orientation error
between the current velocity and the desired velocity. The approach uses some of the available
acceleration to keep the orientation error constant as the trajectory evolves, and uses the remainder
of the available acceleration to decrease the error.

The vector field derivative,̇X = DqX q̇, defines the amount the desired velocity,X(q), changes
as the system moves bẏq. Let dQ be the acceleration vector applied to the system such that the
change in orientation error is zero. Essentially,dQ, shown in Figure B.5, is a scaled version ofẊ
that has been rotated by the orientation error.

Consider the plane defined by the current velocity,q̇, and the desired velocity,X(q), which we
term thevelocity plane. Decompose the vector field derivative vector into three components: the
component along the desired velocity, the amount orthogonal to the desired velocity in the velocity
plane, and the remainder. The component along the desired velocity is the differential speed change.
The second component encodes how the desired velocity vector differentially rotates in the velocity
plane. The remainder encodes how the velocity plane differentially rotates in space. If the system
is accelerated such that the current velocity differentially rotates in the velocity plane the same as
the desired velocity, and rotates with the velocity plane, then the change in the orientation error will
be zero. Define the following unit vectors:˙̂q, M̂ , N̂ , andP̂ , where ˙̂q is the unit vector along the
current velocity,M̂ is the orthogonal to the desired velocity in the direction given by the error vector
e = X(q) − q̇, N̂ is the unit vector orthogonal to the current velocity in the direction ofM̂ , and
P̂ is the unit vector orthogonal to the velocity plane. These vectors are shown in Figure B.5. Note,
thatM̂ andN̂ are both in the velocity plane. If the current and desired velocities are aligned, define
M̂ = N̂ = 0.

c© 2007 David C. Conner 161

X(q)

q
. dQ

X = DqX q
. .

P^

e = X- q
.

N

M

^

^

Figure B.5: Velocity vector relationships for the Track control policy.

Let x = X̂T Ẋ andm = M̂T Ẋ, and define

P = Ẋ − x X̂ −mM̂ ,

whereX̂ is the unit vector along the desired velocity (recallX(q) = s(q) X̂(q)). The vectorP ,
orthogonal to bothX̂ andM̂ , defines how the desired velocity vector rotates out of the velocity
plane. The scalarx defines the differential speed change, and the scalarm defines how the desired
velocity vector rotates in the velocity plane. Considering the different magnitudes ofq̇ andX(q),
define

dQ =
‖q̇‖

‖X(q)‖
(

x ˙̂q +mN̂ + P
)

.

This is equivalent to scalingẊ, and rotating in the velocity plane by the orientation error. Given
the desired velocity scaling,s(q), from (B.31),‖dQ‖ ≤ Amax because‖q̇‖ ≤ ‖X(q)‖ in D(ΦT),

and
∥

∥

∥Ẋ
∥

∥

∥ ≤ Amax. Letting u = dQ will hold the orientation error constant, while allowing the

speed to change proportionally. In general, because‖dQ‖ ≤ Amax, there will be some acceleration
capacity left over to decrease the orientation error. The remainder of this section presents a strategy
for efficiently using the remaining capacity.

Consider the control lawu = dQ+K∗ (X(q) − q̇), whereK∗ is calculated to use the remaining
acceleration capacity. The speed will never exceed the desired speed under this control, because the
only component along the current velocity vector is directly proportional to the speed change of the
reference vector field when‖q̇‖ = ‖X‖ and the component along the error will tend to decrease
speed. Thus, this control will decrease the orientation error, or at worst keep the error constant.

The available control can, however, be used more efficiently. Consider, ifm < 0 the vector field
is changing in a way that is already decreasing the orientation error. Also, if the speed change given
by x is positive, then this component can safely be ignored; assuming that alignment is preferred
over speed matching. RedefinedQ such that

dQ =
‖q̇‖

‖X(q)‖
(

min (0, x) ˙̂q + max (0,m) N̂ + P
)

, . (B.39)

and preferentially use the available acceleration for steering, then use any remaining acceleration
for speed regulation. The Track control policy is defined as

ΦT : u = dQ+ s N̂ + a ˙̂q , (B.40)

162 c© 2007 David C. Conner

where

s = min

(

K N̂T
e ,

√

Amax
2 − q̇T q̇

XTX

(

PTP + min (0, x)2
)

− ‖q̇‖
‖X‖ max (0,m)

)

and

a = min

K ˙̂qTe,

√

Amax
2 − q̇T q̇

XTX
PTP −

(‖q̇‖
‖X‖ max (0,m) + s

)2

− ‖q̇‖
‖X‖ min (0, x)

 .

Thes term is used to decrease the orientation error proportional to error, but limited by the available
acceleration; thea term is used to increase the speed using a portion of the remaining acceleration.

In the limit, as the velocity error approaches zero, the Track control policy is identical to the
velocity reference control policy given in (B.18). The vector fieldX(q) is defined as in (B.31);
thus,ΦT is able to follow the integral curves ofX(q) without violating the constraints. Given this
definition of the track control policy, the value ofK only needs to be greater than zero for proper
convergence, and not “sufficiently large”.

Lemma B.3.3 Under the influence of the Track control policy, the system (B.28), with constraints
given in (B.29) and (B.30), and initial condition{q, q̇} ∈ D(ΦTP), converges to the integral curves
ofX(q), defined in (B.31), in a way such that‖q̇‖ remains less than‖X‖ and the trajectory never
exits the cell except by the outlet zone. For flow-through vector fields, the system trajectory exits
the cell in finite time. For convergent vector fields, the system converges to an arbitrarily small
neighborhood of the goal in finite time.

Proof: The policy is designed so that the orientation error monotonically decreases, and the speed
never exceeds the desired speed.

Therefore, the proof directly follows that of Lemma B.2.4.

2

c© 2007 David C. Conner 163

165

Appendix C

Test for Collision Free Cells

The policy design approach taken in this thesis defines conditionally invariant policies over cells in
pose space. The cell defines the policy domain with respect to pose space. Given a conditionally
invariant policy, the policy issafe if and only if all poses within its associated cell are collision
free. In other words, since the system cannot leave the domain except via a goal set by definition
of conditional invariance, the system can only collide with an obstacle if the cell intersects the
boundary of the free pose space1. If the cell is completely contained in the free pose space, then
the system must depart the cell in order to collide with an obstacle, and thus violate the assumption
of conditional invariance. Therefore, we can guarantee that the hybrid control policy is safe if each
cell used to define a policy within the hybrid control framework is safe. This appendix presents a
novel approach to determining whether a given cell is fully contained within the free pose space,
without explicitly constructing the free pose space.

Before presenting our approach, this section provides a brief overview of two alternate ap-
proaches that have been used by the motion planning community. This provides an introduction to
the concept, and The second section provides the mathematical basis for our technique. A tractable
testing procedure is developed in the third section. The chapter concludes with a discussion of the
testing process.

C.1 Alternate Approaches

As with the rest of this thesis, this discussion assumes a single bodied robot moving in a bounded
planar workspace populated with a finite number of obstacles. Many of the early path planning
techniques assume a point robot moving through its environment[22, 75]. If a non-point robot has
fixed orientation or is bounded by a circle, then the process of constructing the free pose space
can be viewed as “expanding” the workspace obstacles to account for the finite robot size, which
allows the robot to be treated as a point for planning purposes [22, 87]. This approach is shown in
Figure C.1.

The process of “expanding” the obstacles is based on the planar Minkowski difference [22, 87].
Let R ⊂ IR2 denote the set of points occupied by the robot relative to its reference point, and
let O ⊂ W denote the set of points occupied by a particular obstacle in workspace. Define the
expanded obstacle as

Oi ⊖R = {p ∈ W | ∃a∈Oi,b∈R p = a− b} ,
1For flow-through policies, the implicit requirement is that the goal set be contained in the domain of another safe

policy

O1

O2

A B

Figure C.1: The figure shows a bounded workspace with five black obstacles,including the
workspace boundary. Two robots, labeled ‘A’ and ‘B’ are shown in the lower left; robot ‘A’ is
circular, robot ‘B’ is shown by the black ellipse. The reference points are marked with small pluses.
The dark gray regions shows how the obstacles are expanded to account for the size of robot ‘A’.
Robot ‘A’ can plan a path through the remaining space as if it was a point. A conservative approach
would bound robot ‘B’ with the large circle centered at the reference point as shown, and then ex-
pand the obstacles as shown by the light gray regions. This results in a disconnected workspace in
this example. As robot ‘B’ is actually narrower than robot ‘A’, and can pass between the obstacles
at specific orientations, this conservative approach is not complete.

whereOi ⊖ R denotes the Minkowski difference between setsOi andR. For circular robots, or
objects with fixed orientation, this transformation to an expanded obstacle representation is exact,
and point-based path planning approaches are complete. There are algorithms for constructing the
boundary of the expanded planar obstacles for circles and polygons. For robots with non-circular
shape and variable orientation, one approach is to expand the obstacles based on the minimum
bounding circle whose center is the reference point attached to the robot. While this approach
guarantees safety, it is overly conservative as illustrated in Figure C.1.

Another approach is to map the workspace obstacles to obstacles in the pose space. Concep-
tually, the planar workspace obstacles are expanded based on the robot body at a given orienta-
tion [22, 75]. These planar sets can be “stacked up” by considering each orientation as a slice of the
body pose space; Figure C.2 shows an example of this approach. Note that this “stacking process”
results in a mapping from the planar workspace to theIR3 representation of the pose space. Even
for simple shapes like polygonal robots and obstacles, the representation of the pose space obstacle
boundary becomes a collection of curved surface patches inIR3. Although there exist algorithms to
construct these representations for obstacles and robots defined as semi-algebraic sets, the resulting
representation ofGfree is quite complex. Many modern planning techniques, such as probabilistic
roadmaps and RRTs, use probabilistic techniques and collision testing to explicitly avoid construct-
ing the free configurations space [78, 75].

166 c© 2007 David C. Conner

x y

q

FigureC.2: The pose space obstacle for a triangular robot and five-sided obstacle in workspace.
Notice how each vertex/facet combination becomes a curved surface in pose space. (Figure courtesy
Howie Choset [22].)

C.2 Calculation of Expanded Cell

For the hybrid control technique used in this thesis, we must verify the safety of a given policy
over its entire domain. We prefer guarantees over probabilistic approaches, but initially it appears
difficult to test that a given cell, of arbitrary shape, is fully contained in the free pose space. This is
because the test would apparently require constructing the pose space obstacles, and then testing for
intersection between the surface patches that define the cell boundary and the curved pose obstacle
boundary surfaces in three-dimensions. Our approach avoids these difficulties by inverting the
problem.

Our approach expands the cell, which is used to define control policy domains, and not the
obstacle; this approach allows simple intersection tests to be performed in the workspace. This
section provides an overview of the approach, and then derives an exact analytic mapping from a
point on the cell boundary to the corresponding point on the expanded cell boundary. The discussion
begins with some mathematical preliminaries, then the general mapping is defined. A specific
instance of this mapping is demonstrated for an elliptical robot body. Later sections use the general
mapping to define a test that lends itself to simple calculations.

To motivate our approach, consider the two-dimensional iconic example shown in Figure C.3.
In this example, the robot has fixed orientation, and the cell is represented by the two-dimensional
funnel. As the robot body is placed at different positions within the cell, the robot occupies different
regions of the workspace. Given a cell, robot body, and collection of obstacles, our approach verifies
that all possible poses within the cell are collision free.

Recall from Chapter 5 that our control policies are defined over cells in the robot’s pose space.
The cells define the policy domain in the pose space; that is, the set of all posesg ∈ Ξi define the
poses for which a given policy is valid. The mappingR (g) defines the set of points in workspace
that a robot body occupies at a given pose;R (g) is a function of both position and orientation of
the robot body. For a given cellΞi, let

R (Ξi) =
⋃

g∈Ξi

R (g) . (C.1)

R (Ξi) is the swept volume ofR (g) over allg ∈ Ξi; that is,R (Ξi) is the set of all possible points
in workspace occupied by the robot for any possible pose within the cell.

c© 2007 David C. Conner 167

Figure C.3: Consider the iconic funnel used to represent the cell that definesthe policy domain, and
the dark polygonal robot body shown in the lower left. The body reference point is indicated by the
dot in the center. In this example the robot body is at fixed orientation. If the robot body is placed
at any position within the cell, it occupies a certain region of the planar workspace. If the robot
body is convolved with all positions within the cell, the set of points occupied by the robot extends
beyond the boundary of the cell, as indicated by the light gray region.

Definition: A cell is collision free, that is contained in the free pose space, if and only if

R (Ξi)
⋂

(

⋃

k

Ok

)

= ∅ .

For collision to occur, an obstacle must intersect the boundary ofR (Ξi), denoted∂R (Ξi), or an
obstacle must be completely contained in the interior ofR (Ξi). Thus, to test for collision, a mapping
R : Ξi ⊂ G → R (Ξi) ⊂ W is needed; Figure C.4 illustrates the approach.

The expanded cell approach developed in this chapter finds tractable methods of approximating
R (Ξi), and then tests this approximate set for collision in the workspace. The chapter describes an
approach that guarantees the approximation is safe, without being overly conservative.

For this approach, we first identify the local chart inIR3 of the body pose spaceG that is used
to define the cellΞi, with IR3 = W × IR, the planar workspace crossed with the real line. To be
formally correct, we map the cellΞi into this second copy ofIR3; in an abuse of notation, letΞi
denote the closure of the cell inIR3 and letg denote the pose in this space2. We assumeΞi is a
compact, connected, closed set, without holes; that is, it is homeomorphic to a ball inIR3. The cell
boundary is composed of piecewise differentiable surface patches, and has a well defined outward
pointing normal almost everywhere. These conditions are true for the cells defined in this thesis.
The obstacles are mapped from the workspace toW × {0} in this same copy ofIR3.

2This“abuse” is recognition that the pose spaceG and theIR3 representation ofW× IR are not the same spaces, even
though they are both embedded inIR3.

168 c© 2007 David C. Conner

a) Cell in robot body pose space b)R (Ξi) - Extent of robot body in workspace

Figure C.4: Given a cell defined in pose space (a), we seek a mapping toR (Ξi) in workspace (b).
In this example, the lighter surface mesh shown in (b) represents the setR (Ξi) for the cell in (a).

The approach developed in this chapter expands the cellΞi ⊂ IR3 to account for the extent of the
robot body, and then projects the expanded cell to thexy-plane given byW × {0}. The projection
yieldsR (Ξi), or more precisely its equivalent representation in this copy ofIR3. Figure C.5 shows
the expanded cell representation for the mapping in Figure C.4. The expansion, projection, and
subsequent tests depend only on the robot body shape, the collection of obstacles, and the specific
cell shape.

Loosely speaking, the expanded cell is found by calculating the Minkowskisum. ofΞi and
R (g). Where the Minkowski difference is used expand obstacles in order to indicate how close
the body can approach an obstacle, and the Minkowski sum is used to indicate how far past the
boundary of one set another extends. In this case, however,R (g) is a two-dimensional set inIR2

and bothΞi and the expanded cell live inIR3. We extend the basic Minkowski sum definition based
on calculations performed on a planar slice of the cell. The slice is taken at a given orientationθ
(Figure C.6-a); the Minkowski sum is calculated for the cell restricted to the slice and the robot body
at the same orientation. We will abuse notation and used the Minkowski sum symbol to denote our
expanded cell asΞi ⊕R. Formally, the expanded cell is given by

Ξi ⊕R =

x
y
θ

+

1 0
0 1
0 0

 p | {x, y, θ} ∈ Ξi and p ∈ R ({0, 0, θ}) ⊂ IR2

, (C.2)

whereR ({0, 0, θ}) represents the set of robot body points at the origin rotated byθ. This extended
definition maps the two-dimensional pointp into the three-dimensional space. This continuous
mapping is equivalent to taking the standard Minkowski sum of a planar slice ofΞi at constant
orientation with the robot at the same orientation, and then “stacking the slices” (see Figure C.6).

c© 2007 David C. Conner 169

Figure C.5: The cell boundary (dark inner surface) is expanded to accountfor the robot body shape,
and projected to yieldR (Ξi). Note, the goal set is not shown, and appears as an open face. We
assume that the goal set will be contained within the domain of another policy, so expanding this
set is unnecessary.

a) Cell cut at constant orientation

x

y

b) Cell boundary slice and robot body

x

y

c) Expanded cell boundary for slice

FigureC.6: The calculation of the extended surface is based on a planar Minkowski sum. a) Con-
sider a slice of the cell at constant orientation. b) The robot body is placed along the boundary of
the cell for this constant orientation. The corresponding point on the expanded surface is found by
matching normals for the planar cell boundary and the robot body. c) The boundary of the extended
cell is calculated.

In another abuse of notation, letR (Ξi) = πxy (Ξi ⊕R) ⊂ W × {0} ⊂ IR3, whereπxy is the
trivial projectionπxy (x, y, θ) = (x, y, 0). This definition is identified with the definition given in
R (Ξi).

While this set-based calculation ofR (Ξi) is correct, it is impractical for actual testing because
it depends on an infinite number of points in bothR (g) andΞi. As a step toward reducing the
complexity, consider the boundary of the expanded cell. For planar Minkowski sums of two setsA
andB, the boundary ofA ⊕ B is a subset of the convolution of the boundaries∂A and∂B [100,

170 c© 2007 David C. Conner

101, 109]. That is∂ (A⊕B) ⊂ ∂A ∗ ∂B, where

∂A ∗ ∂B = {a+ b | a ∈ ∂A, b ∈ ∂B, s.t. n∂A (a) ‖ n∂B (b)} (C.3)

with n∂A (a) the boundary normal toA at a andn∂B (b) the boundary normal toB at b, and‖
denotes the vectors are parallel3. This result says that any boundary point of the Minkowski sum
of two sets will be the sum of two points taken from boundaries of the two sets. Furthermore, for
a given pointa ∈ ∂A, the choice of pointb ∈ ∂B is constrained to those points in∂B such that
the boundary normal atb is parallel the boundary normal ata. Note that the converse is not true;
the sum of some boundary points of the two sets will be on the interior ofA ⊕ B and not on the
boundary.

We use this result to define a mapping from the boundary of the cellΞi to a surface that covers
the boundary of the expanded cellΞi ⊕ R. Recall how the planar Minkowski sum was used to
define the mapping in (C.2) between a two-dimensional set and three-dimensional set; we define an
analogous mapping for the convolution-like surface between the two-dimensional robot set and the
three-dimensional cell. Given a robot pose on the cell boundary,g = {x, y, θ} ∈ ∂Ξi ⊂ IR3, the

corresponding outward pointing normal to the cell boundary,n (g) =
[

nx ny nθ
]T

, is projected

to a plane parallel to thex-y plane using the trivial projectionπxyn (g) =
[

nx ny
]T

. Given a point
p ∈ ∂R ({0, 0, θ}), let nR (p) denote the outward pointing normal to the robot body at orientation
θ. Giveng ∈ ∂Ξi which defines a position(x, y) and orientationθ of the robot body, we find the
pointsp ∈ ∂R (0, 0, θ) such that their normalnR (p) is parallel to the projection of the cell boundary
normalπxyn (g) (see Figure C.6-b). Define the convolution-like surface∂Ξi ∗ ∂R, which contains
the boundary ofΞi ⊕R ⊂ IR3, as

∂Ξi ∗ ∂R =

x
y
θ

+

1 0
0 1
0 0

 p |{x, y, θ} ∈ ∂Ξi , p ∈ ∂R ({0, 0, θ}) , s.t. πxyn (g) ‖ nR (p)

(C.4)
The mapping is continuous except where the cell surface normal projection is not well defined.
Piecewise differentiable cell surface patches map to piecewise differentiable expanded cell patches
almost everywhere.

Example: Elliptical Robot Body

Consider the elliptical robot body shown in Figure C.6-b. In the body reference frame,
the robot body boundary is defined by

{

prb = (xrb, yrb) ∈ IR2 | f−1 (prb) = 0
}

, where
the functionf (prb) = pTrbMprb−1 withM a2×2 positive definite matrix that encodes
the elliptical shape.

We use the extended convolution operator (C.4) to find the point on the expanded cell
boundary given a point on the cell boundary. Letg = {x, y, θ} ∈ ∂Ξi ⊂ IR3 repre-
sent the pose of the body reference point on the cell boundary, and let the cell surface
normaln (g) be given. Define the projected unit vectorn̂π (g) =

πxyn(g)
‖πxyn(g)‖ . The as

yet unknown point on the expanded cell that corresponds tog is p = (xp, yp, θ) ∈
∂Xii ∗ ∂R ⊂ IR3. Let vp = πxy (p− g) be the vector in the workspace frame from
g to p, wherep is a point on the robot body atg. The corresponding pointprb on the

3If both sets,A andB, are convex, then∂ (A ⊕ B) = ∂A ∗ ∂B. Unfortunately, the planar slices of the cells are not
convex in general.

c© 2007 David C. Conner 171

robot body, in the body reference frame, is given byprb = Rot(θ)T vp with Rot(θ) the
2 × 2 rotation matrix. For pointsp on the boundary of the robot atg, rewrite the body
function as

f (p) = vTp Rot(θ) M Rot(θ)T vp − 1 , (C.5)

wherevp = πxy (p− g) as before. The robot boundary normal in the workspace frame
is given by

nR (p) = 2Rot(θ) M Rot(θ)T vp .

Sincep, and thusnR (p), is unknown, letk represent the unknown‖nR (p)‖. To sat-
isfy the matching normal requirement of the convolution surface, equatenR (p) /k and
n̂π (g) and solve forvp as follows:

nR (p)

k
= n̂π (g)

2Rot(θ) M Rot(θ)T vp = kn̂π (g)

vp =
k

2

(

Rot(θ) M Rot(θ)T
)−1

n̂π (g)

vp =
k

2
Rot(θ) M−1 Rot(θ)T n̂π (g) .

Substitutevp into (C.5), and solvef (p) = 0 for

k =
2

√

n̂π (g)T Rot(θ) M−1 Rot(θ)T n̂π (g)
.

Substitutingk into the solution forvp yields

p = g +

1 0
0 1
0 0

 vp ∈ ∂R (g) ∗ ∂Ξi

xp
yp
θ

 =

x
y
θ

+

1 0
0 1
0 0

Rot(θ) M−1 Rot(θ)T n̂π (g)
√

n̂π (g)T Rot(θ) M−1 Rot(θ)T n̂π (g)

Thus, the pointg = {x, y, θ} on the cell boundary is mapped to the pointp = {xp, yp, θ}
on the convolution surface that contains the expanded cell boundary.

For elliptical body representations, (C.4) gives a one-to-one mapping from the cell
boundary to a point on the expanded cell boundary.

The mapping(∂Ξi ∗ ∂R) (g) determines a point-by-point mapping for any point on the cell
boundary to a set of points either on the boundary ofΞi ⊕ R or, on its interior. That is,∂Ξi ∗ ∂R :
∂Ξi → ∂Ξi ∗ ∂R. For more general body representations, such as polygons, (C.4) may result in a
one-to-many mapping at certain points. For example, if the projected cell normal matches a body
polygon edge normal, the mapping would give the line segment defining the expanded surface,
and not a point. For the moment, we will assume the surfaces provide a one-to-one continuous
mapping; that is only one point on∂R (0, 0, θ) matches, and the surface normal is continuous over
the boundary ofΞi. Analysis of the surface continuity and one-to-many point ideas are explored

172 c© 2007 David C. Conner

later in this chapter. While the convolution surface may define some points on the interiorof the
expanded cell, the convolution surface will contain the expanded cell boundary surface given a
continuous surface normal over∂Ξi.

The set of workspace points,R (Ξi), occupied by the robot over the cell is found by projecting
the convolution surface toW × {0}, which is identified withW; that isR (Ξi) = πxy (∂Ξi ∗ ∂R).

Lemma C.2.1

R (Ξi) = πxy (Ξi ⊕R)

= πxy (∂ (Ξi ⊕R)) (C.6)

= πxy (∂Ξi ∗ ∂R)

Proof: The first line,R (Ξi) = πxy (Ξi ⊕R), is true by definition when we identifyW × {0} and
W. Functionally,R (Ξi) is the union of the projections of each slice inΞi ⊕ R, where each
slice is the Minkowski sum of the robot body an all points in the cell at that orientation.

SinceΞi is a closed set,πxy (∂ (Ξi ⊕R)) ⊆ R (Ξi).

To see thatR (Ξi) ⊆ πxy (∂ (Ξi ⊕R)), and henceR (Ξi) = πxy (∂ (Ξi ⊕R)) , consider
passing a line fromθ = ±∞ through and orthogonal toW × {0}. For any point on the
interior of (Ξi ⊕R), the line passes through two boundary points; both boundary points and
the associated interior point project to the same point inW × {0}. Thus, we conclude that

πxy (∂ (Ξi ⊕R)) = πxy (Ξi ⊕R) = R (Ξi) .

The convolution surface contains the expanded cell boundary, that is∂ (Ξi ⊕R) ⊆ ∂Ξi ∗∂R,
thusπxy (∂ (Ξi ⊕R)) ⊆ πxy (∂Ξi ∗ ∂R) [100, 101, 109].

Any points in∂Ξi ∗ ∂R not contained in∂ (Ξi ⊕R) are in the interior ofΞi ⊕R by defini-
tion of the Minkowski sum; interior points project toπxy (∂ (Ξi ⊕R)) from the proof of the
second line. Thus,πxy (∂Ξi ∗ ∂R) ⊆ πxy (∂ (Ξi ⊕R)) and we conclude

πxy (∂Ξi ∗ ∂R) = πxy (∂ (Ξi ⊕R)) .

Thus, we conclude that

πxy (∂Ξi ∗ ∂R) = πxy (∂ (Ξi ⊕R)) = πxy (Ξi ⊕R) = R (Ξi) .

2

By projecting(∂Ξi ∗ ∂R) into W × {0}, we determineR (Ξi) = πxy (∂Ξi ∗ ∂R), and hence,
the maximal extent of the robot body for any pose in the cell. There are several problems with this
definition and is application to cells with discontinuous surface normals. First, the mapping in (C.4)
does not guarantee a continuous cover of∂ (Ξi ⊕R). For each parameterized differentiable surface
patch on the cell boundary,∂Ξi ∗ ∂R defines an exact parametric representation of a patch on the
cell/robot convolution surface. The surface patches are not necessarily continuous if the normals
along the patch boundaries are not continuous. Second, this test still requires an infinity of points
to be tested. The next section addresses these issues, and uses (C.4) to generate a tractable collision
test.

c© 2007 David C. Conner 173

C.3 Collision Testing Using Expanded Cells

Thissection presents a tractable approach to testing for collision based on a discrete sampling of the
cell surface and the mapping defined in (C.4). This section discusses the calculations, and methods
to address the continuity issues introduced above.

C.3.1 Mesh Definition

The collision tests are a combination of exact and approximate tests. We are given a mesh repre-
sentation of the parameterized surface patches that define the cell boundary. That is, we are given a
finite collection of sample points spread around the surface, and a collection of edges that connect
adjacent points to form a surface mesh representation. Triangulated surface mesh representations
are commonly used. This thesis does not address the “best” way to construct a mesh representation
for a given cell, or techniques for adaptively refining the mesh. We assume that each facet in the
initial mesh is contained within a single differentiable surface patch.

Given the collection of mesh vertices on the cell boundary surface, the vertices are mapped to
a point on the convolution surface of the expanded cell. This mapping is exact and analytic. Using
the same mesh connections as the cell surface representation gives a mesh representation of the
convolution surface patches of the expanded cell.

There are two problems with this approach: disconnected facets and facet expansion. Discon-
nected facets require that the mesh be “stitched together”. Facet expansion requires that the mesh be
refined to meet resolution requirements. Our simple techniques for refining the mesh as necessary,
and stitching the disconnected patches together, are discussed below. For the moment, assume that
these issues are addressed, and the expanded cell has a “continuous” surface mesh representation of
sufficient resolution. The next sub-section presents the approach to testing for collision; afterwards,
the following sub-section returns to discuss how these two issues are addressed.

There are guidelines for defining the initial cell mesh. Since the expanded cell is defined for
slices of constant orientation, and the mapping∂Ξi ⊕ ∂R does not change the orientation, the cell
mesh should initially be sampled at a sufficiently fine resolution in orientation. In other words,
there should not be relatively large gaps in orientation between any two pairs of vertices in the
mesh. As a rule of thumb, consider the minimum bounding radius of the robot body boundary,
and the desired sampling resolution in workspace based on obstacle size; the orientation sampling
should be less than desired sampling resolution divided by bounding radius. Respecting this at the
outset can reduce the burden on the refinement process. Second, discontinuous normals will lead to
discontinuous maps; thus, it is prudent to finely sample along the boundaries of cell surface patches.

C.3.2 Collision Testing

The collision test is based on mapping the surface mesh of the convolution surface to the workspace
to give an approximation ofR (Ξi). The expanded cell mesh vertices are projected to the workspace
usingπxy; using the same mesh connections between vertices gives a collection of overlapping
facets in workspace. These projected facets approximateR (Ξi) since each vertex is contained in
R (Ξi) by Lemma C.2.1. Figure C.5-b shows the result of this projection.

Given the planar mesh approximation ofR (Ξi), each obstacle is tested for collision. First,
the projected vertices of the expanded cell mesh are tested for inclusion within the collection of
obstacles. This test is exact based on the point-wise analytic mapping; if a vertex is contained
within an obstacle, then the cell is unsafe and must be modified. Assuming polygonal obstacles, or
simple elliptical obstacles, these inclusion tests are trivial.

174 c© 2007 David C. Conner

To guard against a small obstacle being contained withinR (Ξi), the obstacles are tested against
the collection of facets in the projected expanded cell mesh. Assuming a polygonal representation
of the obstacles, the vertices of each obstacle are tested for inclusion in any of the projected facets.
This is an approximate test based on the projected facets. If any obstacle vertex is contained in
the interior of any projected facet, the cell is assumed to be unsafe. This approximation may be
conservative if the boundary ofR (Ξi) is highly curved, and the facets are relatively large. Obstacle
‘A’ in Figure C.7 shows an example where this test is overly conservative. Reducing the maxim
facet diameter by increasing the mesh resolution will reduce these false positives.

If these two tests fail to find an intersection, then the cell is assumed to be safe. There are,
however, at least two false negatives that must be guarded against. The test can fail in the presence
of long thin obstacles and relatively large facets as shown by obstacle ‘B’ in Figure C.7; thus, the
sampling resolution should be less than the minimum dimension over the set of obstacles. Another
approach, is to add test points scattered over the obstacle interior in addition to the vertices; this
approach also works for non-polygonal obstacles. A third approach to dealing with skinny obsta-
cles is to test for line intersections between the obstacle boundaries and the projected facet edges;
however, this increases the computational cost significantly.

Another failure, shown by obstacle ‘C’ in Figure C.7, occurs when the boundary ofR (Ξi) ex-
tends past the approximation. To avoid this failure, the obstacles should be padded by a distance
based on the maximum error between the actual boundary ofR (Ξi) and the projected mesh ap-
proximation. Given the analytic mapping, and the piecewise differentiable surface patches, it is
possible to bound the error, either through sample-based estimation or analytically for some mesh
strategies [99]. These calculations depend on the mesh generation technique, and are beyond the
scope of this thesis.

A

C

B

Figure C.7: Collision tests on the approximation ofR (Ξi) usingoverlapping facets. The light gray
region denotes a representation ofR (Ξi). The grid and facets shows the approximation based on
the projection of expanded cell surface mesh. The dark gray obstacle on the left labeled ‘A’ does not
intersectR (Ξi); however, the approach classifies the cell as unsafe based on the facet intersection
near point ‘A’. Obstacle ‘B’ intersectsR (Ξi), but the approximate tests misses the fact as no vertices
in ‘B’ are contained in a facet, and no facet vertices are contained in ‘B’. The obstacle labeled ‘C’
on the right does intersectR (Ξi), but the approximation misses this collision.

c© 2007 David C. Conner 175

C.3.3 Patch Stitching and Mesh Refinement

This mesh-based approach to testing cell safety depends on the projected expanded cell mesh
accurately approximatingR (Ξi). Regardless of the accuracy of mesh approximation of the cell
boundary surface, the true measure is how well the mesh mapping approximates∂Ξi ∗ ∂R. Thus,
patch stitching and mesh refinement must be addressed.

While the differentiable surface patches on the cell are connected, they are not necessarily con-
nected when mapped to the expanded cell. The most likely cause is discontinuous normals along
the patch boundaries; in this case a single pose does not have a well defined normal. For a mesh
vertex along patch boundaries, there may be multiple surface normals that apply the particular pose;
in this case, the pose is duplicated with multiple vertices each associated with a particular surface
patch, and therefore a particular surface normal.

One strategy for stitching the surface patches together is to define facets that tie these distinct
vertices together. Along a common patch boundary, two adjacent poses from one patch are joined
with a vertex that matches one of the poses but is assigned to the adjoining surface patch. Doing this
for all common edges results in a line of degenerate triangles along the cell boundary, that likely
map to non-degenerate triangular facets in the expanded cell surface. Figure C.8 shows a schematic
example of this stitching process. One notes the obvious effect of facet expansion in this example.

To control the accuracy of the expanded cell approximation, and hence the accuracy of the
R (Ξi) approximation, the mesh representation of the expanded cell is post-processed and refined
as necessary. As stated earlier, the vertices in the expanded cell mesh are projected to the workspace
usingπxy to give a collection of overlapping facets that approximateR (Ξi). Larger facets will tend
to have larger error, so the length of facet edges is limited based on the desired workspace sampling
resolution. Although there are approaches for adaptively adjusting a fixed number of vertices to
create similar sized facets [99], this thesis implements a simple approach. Given the initial mesh,
the refinement process iteratively adds vertices and splits large facets into multiple facets based on
workspace measurements.

A 1

B

2

3
4

1

B

2
34

A
12

3

4

∂Ξi ∗ ∂R

FigureC.8: Two continuous cell surface patches ‘A’ and ‘B’ are mapped to discontinuous patches
on the expanded cell. By adding facets that contain vertices from both patches along the common
boundary, the discontinuous patches can be stitched together.

176 c© 2007 David C. Conner

The refinement process described here is based on systematically subdividingfacets that are too
large. The Euclidean distance between projected facet vertices is calculated; if the distance exceeds
the defined sample resolution, then the facet is split. In the basic case, a new vertex is added along
the long edge connecting the two vertices, and a vertex is added at the centroid of the two facets that
share the edge. Each triangular facet is split into four triangles; the two facets that share the split
edge are split into eight triangles. Normally, the sample points are added in the parameter space
that defines the cell boundary. The cell surface patch associated with the new vertex is identified,
and the appropriate normal is calculated. The new vertices are mapped to the expanded cell, and
projected to the workspace. The basic refinement process continues until each edge in the projected
mesh is less than the workspace sample resolution, or the parameter space separation is less than
some minimal threshold. There are a few special cases to consider.

One set of special cases to consider is where a vertex is to be added to a facet that connects
two different surface patches along the shared boundary between two cell surface patches. If the
edge to be split has two vertices from one patch, then two new vertices are added, one for each
patch and surface normal. The proper “stitching” facets are added to the list of facets. If the
split is along an edge connecting two different surface patches, then a single vertex along the edge
and a vertex at the centroid is added with interpolated normals. The normals are interpolated as
illustrated by Figure C.9. In this case, the pose is the same; the only difference is in the interpolated
normal. The decision to add a vertex is based on the distance between projected expanded cell
vertices and the difference between interpolated normals, as the parameters space difference is zero.
If the new vertex is added to an edge containing an existing interpolated vertex, the new vertex
should interpolate its normal based on the interpolated normal of its neighbor. Thus, new vertices
at the same pose are introduced to address the discontinuous normals, and stitch the surface patches
together with an approximately continuous mapping.

Another special case relates to robot bodies defined by piecewise differentiable functions such as
polygons. For elliptical robot bodies, the convolution surface mapping is one-to-one; there are only
two points where the normals are parallel, and one is eliminated because it is always in the interior.
For more general body shapes, the mapping may be many-to-one. Here we consider the case of
polygonal body shapes; consider the case illustrated in Figure C.10. For most cases, assuming
general position, a one-to-one mapping is preserved as the requirement of matching normals will
choose a polygon vertex such that the cell normal is in the positive span of the adjacent edge normals.
If the cell normal matches an edge normal on a polygon, the point on the cell boundary will map to

A

Figure C.9: A the junction of two cell boundary patches with discontinuous normalvectors, blend
the normal vectors while holding pose constant to provide a continuous expanded cell boundary
surface. Similar techniques are used with robot bodies defined by piecewise differentiable curves.

c© 2007 David C. Conner 177

1

1 2

2 22

3

3

Figure C.10: With polygonal robot bodies, the expanded cell mapping experiencesdiscontinuous
jumps between body vertices. This figure shows an arc of the cell boundary and its mapping to the
expanded cell for a rectangular robot body. In this case, the cell mesh vertex 1 and 3 map to single
points on the expanded cell, but the points correspond to different vertices on the body rectangle.
Cell vertex 2 is mapped to a line segment corresponding to the edge that matches the cell normal.
To preserve a one-to-one mapping, a particular point along the edge must be chosen.

a line segment. To preserve a one-to-one mapping, one point in the line segment must be chosen.
There are several “reasonable” choices.

If all the normals of the other facet vertices in the facets connected to this cell vertex would lead
to a particular body vertex being chosen, it is reasonable to chose that body vertex for calculation of
p (g). If the other facets disagree on which body vertex to choose, then it is reasonable to interpolate
between the body edge vertices. A more common situation is refining a facet edge where one facet
vertex is associate with one body vertex, and the other facet vertex is associated with the other body
vertex. In this case, it is reasonable to add an interpolated value in calculatingp (g). The vertex
should track the interpolation value to use in later refinements. Thus, the many-to-one mapping is
accommodated by iteratively adding vertices and facets during refinement.

The final special case, that is checked after the refinement process is complete, is when the three
projected normals of a facet spanIR2, or two projections are equal and the other spansIR; in these
cases, at some point in the region of the approximated surface patch the projected normal is null.
That is, the cell surface normal is orthogonal to the projection plane. In this case, the a collection
of vertices and facets are added to the mesh that represent a mesh over the robot body at the pose of
the facet centroid. As the cell is compact with a well defined surface normal, these added vertices
always project to the interior ofR (Ξi).

C.4 Testing Process

These collision tests outlined above represent a brute force approach that is not appropriate for real-
time calculations; however, it is easy to implement and is suitable for cell validation during policy
instantiation. The resulting mesh has a finite number of vertices and finite number of facets based
on the sampling resolutions used to guide refinement and enforce termination. The accuracy of the
technique is determined by the accuracy of the expanded cell surface mesh; smaller facets on the
expanded cell surface mesh implies better accuracy. By carefully choosing the mesh resolution, and
slightly padding the obstacles based on the maximum error bound, the approach can be guarantee
the safety of a cell without being overly conservative.

178 c© 2007 David C. Conner

During manual specification of policies, a coarse sampling of the expanded cellis used to check
for the inclusion of the projected vertices in the obstacles. In the early stages, the refinement steps
are skipped, and only the exact collision tests of projected vertex in obstacle is used to rapidly elim-
inate invalid cells. A visual inspection as in Figure C.5-b can also guide the selection of policy
parameters during manual instantiation. Once reasonable choices for policy parameters are deter-
mined, the refined mesh is used for final validation.

For automated instantiation using the policy cache and reference points described in Chapter 5,
these collision tests are automated and incorporated into the instantiation process. A fine resolution
mesh is calculated and refined once for each policy in the cache. The vertices used in the approxi-
mation ofR (Ξi) are stored with the policy cache. During instantiation, the vertices are transformed
relative to the reference point and then tested for collision using the collision tests described above.
If collision occurs, that policy from the cache is not instantiated at the reference point. The rigid
body transformation is fast relative to the mesh generation and refinement process, which only needs
to run once for each policy in the cache.

The complexity of the collision testing has two distinct components. The first component is
directly linked to the complexity of the mesh generation and refinement process used, and is not
explored here. Given a expanded cell mesh withNv vertices andNf facets, andNO obstacles with
NOP vertices and other test points, the complexity of the collision test is O(Nv ∗NO) inclusion tests
for vertices in obstacles and O(Nf ∗NOP) tests for obstacle vertices in a facet.

c© 2007 David C. Conner 179

181

Appendix D

‘PF’ Style Control Policies

This appendix provides a detailed derivation of the ‘PF’ style control policies used in this thesis.
The policies are based on a variable structure control approach topath following, hence the name
‘PF’ [4]. While the approach is inspired by [4], the control technique is different. Furthermore, in
keeping with the sequential composition approach advocated in this paper, the policies have explicit
definitions for the domains of attraction allowing reasoning about their safety in free pose space.

This section begins by presenting the structure of the defined policies, and then presents an
overview of the basic control approach for kinematic systems. The formal derivations for specific
models are delayed until the end of the appendix. The appendix continues with a discussion of
the specific curves – line segments and circular arcs – used in this thesis. The section presents
verification that the policies satisfy the composability requirements given in Section 3.3. Given the
general overview of the cell and control approach, the formal control laws for each system model
are derived. Finally, the section concludes with a discussion of the limitations of lines and circular
arcs, and the challenges of extending the technique to arbitrary curves.

D.1 Policy Structure

Throughout this thesis, the control policies are defined over local regions of body pose space, which
are termed cells. The cells are defined in a localIR3 representation of the{x, y, θ} pose space1. The
cells are defined to be compact connected regions without holes. The cells must have continuous
boundaries, so the±π θ-dimension in body pose space is NOT identified for the cell definition.

For PF style policies, the cells are defined relative to a two-dimensional planar reference curve
that is lifted to body pose space. Letp̂ (s) = (x̂ (s) , ŷ (s)) ∈ IR2 define a planar curve in workspace,
wheres ∈ [0, 1]. We designatêp (0) as the(x, y) position that corresponds to the goal set center;
thus, the control policy is designed to move the system along the curve froms = 1 to s = 0.
Let θ̂ (s) = atan2 (−ŷ′ (s) ,−x̂′ (s)) + 2kπ, where(−x̂′ (s) ,−ŷ′ (s)) is the tangent vector in the
direction of travel; this maps the two-dimensional workspace curve into a three-dimensional body

pose space curvêg (s) =
(

x̂ (s) , ŷ (s) , θ̂ (s)
)

. By choice of the appropriate integer value fork, the

solution toθ̂ (s) is restricted to be continuous along the curve parameterized bys ∈ [0, 1] with θ̂ (0)

as the anchor point. The cell goal center reference point isggoal =
{

x̂ (0) , ŷ (0) , θ̂ (0)
}

.

To enable policy definition, each reference curve is further restricted as follows:

(i) ĝ (s) ∈ Ck, the space of functions withk continuous derivatives fork > 1,

1SeeAppendix A for a discussion of body pose space.

(ii) the reference path’s minimum radius of curvature is larger than minimum allowablevehicle
turning radius,

(iii) the path has a unique closest point for all planar points within a specified open neighborhood.

Condition(i) ensures that the proper derivatives are available for our control approach. Condition(ii)
guarantees that the curve will have a full dimensional region of attraction. Condition(iii) guarantees
that for a sufficiently small neighborhood of the path, the policy is uniquely defined; this constrains
the definition of the cell boundaries.

Given a robot poseg = (x, y, θ) in a neighborhood of thêg (s) curve, lets̄ (g) ∈ [0, 1] specify
the unique nearest point on the planar curvep̂. That is,‖(x, y) − p̂ (s)‖ > ‖(x, y) − p̂ (s̄)‖ for
all s 6= s̄ [4]. At ĝ (s̄), define a local frameF as shown in Figure D.1. LetFx̃ denote the three
dimensional tangent vector to theĝ curve in the direction of travel and parallel to thexy-plane. Let
Fθ̃ be parallel to theθ-axis of the body pose space and in the same direction. LetFỹ form a right
handed coordinate system withFx̃ andFθ̃. Given a continuous curvêg (s), the frame continuously
varies along the path. Note, this convention differs from a conventional Frenet frame as it does not
flip orientation based on the path curvature and the{Fx̃,Fỹ}-axes are parallel to thexy-plane [4].
As described in Section 5.3, the goal set orientation defined by the localx′-axis at the goal set
corresponds to the localFx̃-axis atĝ (0).

The robot body pose is expressed in the localF frame along the curve as̃g (g) =
(

x̃ (g) , ỹ (g) , θ̃ (g)
)

.

Sinces̄(g) is the closest point on the curve, and theFx̃-axis is tangent to the curve,̃x (g) = 0 by
definition. The control problem is to drive the lateral offsetỹ (g) and the heading error̃θ (g) to zero
as the vehicle moves along the path while monotonically decreasings̄ (g). Hence, the natural error

coordinates aree (g) =
(

s̄ (g) , ỹ (g) , θ̃ (g)
)

[4].

D.2 General Control Approach

The control approach for PF policies is based on a form of variable structure control called sliding
mode, control [4, 31]. Sliding mode control works by using a surface to define a switching control
policy. If the vehicle pose is “above” the sliding surface, then the system attempts to steer the vehi-
cle pose onto the sliding surface by maximally decreasingθ̃ (g) as the vehicle moves; for forward

x̃

ỹ

p̂ (0)

p̂ (s̄)

F (s̄)

Figure D.1: Reference path with defined coordinates.

182 c© 2007 David C. Conner

motion, this corresponds to turning right. If the vehicle pose is “below” the slidingsurface, then the
system attempts to steer the vehicle configuration onto the sliding surface by maximally increasing
θ̃ (g) as the vehicle moves; this corresponds to turning left while moving forward. In theory, the
control instantaneously switches as it crosses the sliding surface; if the sliding surface is well de-
signed, the “average”Filipov equivalent control causes the system to “slide along the surface” to
the goal [31]. In practice, we define a “blending zone” on either side of the sliding surface.

To derive a sliding surface in the body pose space, consider the motion of the vehicle as it moves
along a circular arc of radius̃ρ, as shown in Figure D.2. The lateral offset,ỹ, is a function of the

heading change,̃θ, for a given radius. From Figure D.2,cos θ̃ = ρ̃−|ỹ|
ρ̃

, or θ̃ = cos−1
(

1 − |ỹ|
ρ̃

)

.

Clearly, ρ̃ must be larger than the minimum turning radius of the vehicle.

θ̃

θ̃

ỹ

ρ̃

FigureD.2: Moving around a circular arc generates a lateral displacement; the relationship between
lateral displacement and orientation change defines the sliding surface.

 0 θ̃

ỹ
ρ̃

π
2

π
4

− π
4

− π
2 −1 −0.5 0.5 10

(a) (b)

FigureD.3: PF control surface: a) Sliding control surface in the localFỹ-Fθ̃ plane defined by
(D.1). b) Sliding control surface in body pose space formed by extruding the local curve along the
ĝ (s) curve.

c© 2007 David C. Conner 183

Using the above intuition, we defineσ : IR2 → IR as scalar function over the localFỹ-Fθ̃

plane. For the initial discussion, let

σ
(

ỹ, θ̃
)

=

θ̃ − sign (ỹ) cos−1
(

1 − |ỹ|
ρ̃

)

|ỹ| ≤ ρ̃

θ̃ − sign (|ỹ|)
(

π
2 + ỹ

ρ̃
− 1
)

otherwise
, (D.1)

where ρ̃ is a free parameter. Theσ−1 (0) curve, that isσ−1 (0) =
{(

ỹ, θ̃
)

| σ
(

ỹ, θ̃
)

= 0
}

, is

shown in Figure D.3-a. The sliding surface in body pose space is formed by extruding the local
σ−1 (0)-curve along thêg (s) curve, as shown in Figure D.5-b; denote the extruded surface as

Σ−1 (0) whereΣ(g) = σ
(

ỹ (g) , θ̃ (g)
)

. Stated more precisely, sliding mode control attempts to

drive the error coordinatese (g) =
(

s̄ (g) , ỹ (g) , θ̃ (g)
)

to theΣ−1 (0) sliding surface, and then

along theΣ−1 (0) surface towarde (g) = (0, 0, 0) = 0.
Pure sliding mode control works, but suffers from several drawbacks in practice. Sliding mode

control requires an instantaneous change in velocity, which is unrealizable on real systems. Finite
control update times make a sliding mode control system prone to chatter. To mitigate these effects,
we define a blending region on either side of the sliding surface. If the system is outside the blending
region, then the control performs maximal steering towards the sliding surface. Inside the blending
region, the control interpolates between maximal steering and a neutral steering policy that moves
the system along the sliding surface.

The neutral steering policy should be a continuous policy over the sliding surface. Unfortu-
nately, the simple curve given by (D.1) has an undefined derivative atỹ = 0. Thus, we redefine the
local frame sliding surface as

σ
(

ỹ, θ̃
)

=

θ̃ − sign (ỹ) cos−1
(

1 − |ỹ|−ỹo
ρ̃

)

ỹb ≤ |ỹ| ≤ ρ̃+ ỹo

θ̃ − fθ̃ (ỹ) |ỹ| ≤ ỹb

θ̃ − sign (ỹ)
(

π
2 + |ỹ|−ỹo

ρ̃
− 1
)

otherwise

, (D.2)

 0 θ̃

ỹ
ρ̃

π
2

π
4

0

− π
4

− π
2 −1 −0.5 0.5 1

{

−ỹb, θ̃b
}

{

ỹb,−θ̃b
}

−ỹo

ỹo

Figure D.4: The smoothed sliding surface defined in (D.2).

184 c© 2007 David C. Conner

whereỹo is the symmetric offset between two surfaces of the type defined in (D.1),fθ̃ (ỹ) is function

that providesC2 continuity on (D.2) at the points
{

±ỹb,∓θ̃b
}

. For this thesis,fθ̃ is a cubic polyno-

mial whose coefficients and̃yb are determined such that the sliding surface derivative is continuous
at ỹ = ỹb. Figure D.4 shows the new sliding surface in theFỹ − Fθ̃ plane.

Figure D.5-a shows the blending region to either side of the sliding surface. The blending region
is delineated by offsetting the sliding surface in theθ̃ direction±∆θ̃B. Figure D.5-b shows the
interpolating function used to provideC2 continuity of the steering policy. The blending function is

B (g) = B
(

ỹ (g) , θ̃ (g)
)

=

√

3

(

σ(ỹ,θ̃)
∆θ̃B

)4

− 2

(

σ(ỹ,θ̃)
∆θ̃B

)6 ∣

∣

∣σ
(

ỹ, θ̃
)∣

∣

∣ ≤ ∆θ̃B

1
∣

∣

∣
σ
(

ỹ, θ̃
)∣

∣

∣
> ∆θ̃B

, (D.3)

where∆θ̃B is the height of the blending zone relative to the sliding surface. The control effort can
be smoothed by increasing either∆θ̃B or the width of the linear offset,ỹo, at the cost of slowing
convergence to the reference path.

D.3 Cell Definitions

The cell boundary, which defines the neighborhood ofĝ (s) where it is safe to invoke the steering
policy, is based on the curves defined above. Although the control approach is general, this thesis is
restricted to two curve types – straight line segments and circular arcs.

D.3.1 Line-segment Based Cell

For the moment, assume thatp̂ (s) is line segment so that̃θ (ĝ (s)) = θgoal andF (s̄ (g)) only varies
in position along the curve. Given the local frameF (0) at the goal set center̂g (0), and given a

robot poseg = (x, y, θ), the local pose errore (g) =
(

s̄ (g) , ỹ (g) , θ̃ (g)
)

is specified. The value

 0 θ̃

ỹ
ρ̃

π
2

π
4

0

− π
4

− π
2

−1 −0.5 0.5 1

Hard Right

Hard Left

∆θ̃B

(a)

−1 −0.5 0 0.5 1
−0.25

0

0.5

1

B

σ(ỹ,θ̃)
∆θ̃B

(b)

FigureD.5: a) Sliding control surface with blending ranges shown. b) The blending function used
to interpolate between maximal and sliding control.

c© 2007 David C. Conner 185

s̄ (g) = Fx̃(0)·(g−ĝ(0))
L

, whereL is the length of the cell andFx̃ (0) is thex-axis pointing out of the
cell. The lateral offset is̃y (g) = Fỹ (0) · (g − ĝ (0)). The orientation relative to the local frame is
θ̃ (g) = θ − θ̂ (0).

If the direction of travel is oriented with a positive projection along the positivex̃-axis, the in-
stantaneous motion induced by the sliding-mode based policy will decreases̄. By careful definition
of the cell, that is the local neighborhood aroundĝ (s), a control policy that satisfies the objective

of moving along the path while converging to
(

ỹ (g) , θ̃ (g)
)

= 0 may be defined for a variety of

systems. For the systems of concern in this thesis, the instantaneous velocity is always along the

body axis in thexy-plane. Therefore, for forward motion, we cap the range of
∣

∣

∣
θ̃ (g)

∣

∣

∣
< π

2 , which

guaranteesthat invoking the steering policy will make monotonic progress along the planar curve.
The sliding surface should split the cell to prevent the control from driving the system out of the
boundedθ̃ range. That is the sliding surface should not exceed±π

2 within the cell boundary. For
a givenρ̃, this constrains the cell width to the box shown in Figure D.6-a; for a given width, this
constrains̃ρ.

To further define the cell boundaries, consider the six labeled regions shown in Figure D.6-a. On
the sliding surface separating the regions, the neutral steering control is defined to drive the system
along the sliding surface toward theĝ (s) curve; therefore the induced velocity is not transverse to
the sliding surface. As the actions are symmetric about the origin, we will restrict our discussion
to the regions (A,B,C) above the curve. Further, assume the vehicle is traveling forward; similar
arguments apply equally to reverse motion with minor changes to region labels. If the system’s
(

ỹ (g) , θ̃ (g)
)

coordinates are in bounded region A, the control action will induce motion whose

instantaneous motion moves the system towards the sliding surface or across the common face with
region B. The velocity will not exit the upper bound so long as the sliding surface is less than the
upper bound. In region C, the system is naturally oriented toward the sliding surface and away from
the other bounding regions. Thus, once inside, the system will remain in region C until it converges
to the sliding surface. Region B is the problematic region, and must be further constrained.

For poses in region B, the system is oriented away from the sliding surface. While the system
will not cross the given upper bound in region B due to the control that drives the system toward

 0 θ̃

ỹ
ρ̃

π
2

π
4

0

− π
4

− π
2 −1 −0.5 0.5 1

A

B

C

D

E

F

(a)

 0

π
2

π
4

0

− π
4

− π
2 −1 −0.5 0.5 1

θ̃U

(

ỹ
ρ̃

)

θ̃Uoff

θ̃L

(

ỹ
ρ̃

)

θ̃Loff
ρUw

ρLw

θ̃

ỹ
ρ̃

A

B

C

D

E

F

(b)

FigureD.6: PF cell: a) Bounding box and control regions defined relative to the sliding surface. b)
Limiting surfaces defined in the localF frame.

186 c© 2007 David C. Conner

the sliding surface, the control may cross the right side bounding width in regionB. To circumvent
this problem, thẽθ orientation at the extreme width must be less than zero, so that the vehicle is
oriented into the cell. Furthermore, the region B bound must be such that the system can turn fast
enough to stay in region B until it enters region C. For this upper bound, we return to (D.1) and

defineθ̃U (ỹ) = cos−1
(

1 − ỹ−ρUw
ρ̃U

)

− θ̃Uoff
, where turning radius parameterρ̃U > ρmin where

ρmin is the minimum turning radius induced by the maximal steering policy,ρUw < ρ̃ is the cell
width, andθ̃Uoff

is a offset buffer that guarantees the system is oriented inwards at the far boundary.
The lower bounding surface is defined analogously; note that the upper and lower bounding surfaces
and widths are not necessarily symmetric. The values are constrained, but offer some freedom in
defining the cell provided the upper bounding and sliding surfaces do not cross or touch in the
ỹ ∈ [ρLw, ρUw] range. Figure D.6-b shows the resulting limiting surfaces for the cell. Note, the
definition of θ̃U also constrains region A and C.

The policy must guarantee that the steering along the upper (lower) boundaries will keep the
velocity inward pointing with respect to the cell boundary. The simplest test is to forceρ̃U > ρmin,
and guarantee that the blending zone does not intersect the bounding surfaces. That isθ̃MU =
θ̃U (−ρLw) − σ−1

|−ρLw
(0) − ∆θ̃B > 0 andθ̃ML = θ̃L (−ρLw) + σ−1

|ρUw
(0) + ∆θ̃B > 0. Likewise,

θ̃BL = σ−1
|−ρLw

(0) − ∆θ̃B − θ̃Loff
> 0 andθ̃BU = θ̃Uoff

+ σ−1|ρUw
(0) − ∆θ̃B > 0.

Figure D.7-a shows the cell boundary and blending surfaces. The complete cell, formed by
extruding the cell boundaries along theĝ (s) curve, is shown in Figure D.7-b. For any configuration
within this cell, the smoothed sliding mode based policy will keep the vehicle body configuration
within the cell and moving toward thêg (0) point.

The cell pictured in Figure D.7-b is functional, but is not conducive to satisfying a prepares
relationship. While a small cell, that is a narrow “tube” about theĝ (s) curve, can prepare a larger
cell, this does not generalize the funnel metaphor discussed earlier. To this end, we add a constraint

based on a Lyapunov-like function defined in our error coordinatese (g) =
(

s̄ (g) , ỹ (g) , θ̃ (g)
)

.

Let

V (g) = V (e (g)) = exp−
s̄(g)
sv

(

[

ỹ (g) θ̃ (g)
]

W

[

ỹ (g)

θ̃ (g)

])

, (D.4)

 0

π
2

π
4

0

− π
4

− π
2

−1 −0.5 0.5 1

θ̃BU

θ̃MU

θ̃BL

θ̃ML

θ̃

ỹ
ρ̃

(a) (b)

FigureD.7: PF cell: a) Limiting and blending surfaces defined in the localF frame. b) Cell formed
by extruding the sliding and limit surfaces along a straight line.

c© 2007 David C. Conner 187

wheresv is the length scaling andW is a positive definite weighting matrix. A level set ofV at a
given s̄ is an ellipse in the localFỹ-Fθ̃ frame; the elliptical diameters expand along the length of
the cell. Apply the restriction thatV (g) < Vcell to our cell, we restrict the cell definition as shown
in Figure D.8. Care must be taken to verify that the induced velocity is inward pointing along the
portion of the cell bounded byV = Vcell. As the level set is a smooth function ofg, and the policy is
piecewise smooth over the cell surface, the conditional invariance can be verified as described later.

For convenience, the free parameters for the line-segment based PF cell – including those of the
example shown in Figure D.8 – are listed here:

Table D.1: Line-segment based PF cell parameters

Variable Description Range Figure D.8

s Arc length parameter [0, 1] N/A
ggoal Configuration of goal set center ∈ Gfree (0, 0, 0)

L Length along negativeFx̃ (0)-axis (0,∞) 1.51 m
ρ̃ Radius of curvature forσ limited byU 2.45 m
ỹo Smoothing offset (0,∞) 0.025 m
ỹb Smoothing width Calculated 0.0501 m
θ̃b Smoothing height Calculated 0.143 m

∆θ̃B Blending offset
(

0, π2
)

≈ π
42

{ρUw , ρLw} Cell width (0, ỹo + ρ̃) {0.125, 0.125}
{ρU , ρL} Cell limit surface “curvature” (ρmin,∞) {2.45, 2.45}

{

θ̃Uoff
, θ̃Loff

}

Cell limit surface offset (0, π/2) π
50

Vcell Funnel level set value (0,∞) 0.5

Figure D.8: PF cell: Funnel shaped cell formed by extruding the limit surfacesalong thêg (s) path
and cut by the Lyapunov-likeV (e) = Vcell level-set. The goal set boundary is shown as a thick
light colored ellipse.

188 c© 2007 David C. Conner

D.3.2 Circular Arc Based Cell

Theapproach to defining the circular arc based cells is exactly the same as for line segment based
cells. In this case, however, the frame derivatives along the path are non-zero; therefore, the simple
invariance analysis based onρ̃U > ρmin is insufficient to guarantee safety.

The cells are defined in the local pose error coordinatese (g) =
(

s̄ (g) , ỹ (g) , θ̃ (g)
)

given a

robot poseg = (x, y, θ), goal location̂g (0), and goal frameF (0). Letr (g) denote the vector from
the center of curvature of̂p (s) in workspace to the robot(x, y) position, andϕ the angle between
p̂ (0) and the robot position. This is shown in Figure D.9. The vectorr (g) intersects the defined
pathp̂ (s) at p̂ (s̄), wheres̄ (g) = ϕ (g) /ϕ̃ andϕ̃ defines the “length” of the cell; that isρϕ̃ defines
the arc length of̂g (s) for s ∈ [0, 1] whereρ is the radius of the arĉp (s). The curvature of the arc
may be positive or negative, and is determined by the sign ofϕ̃. If ϕ̃ < 0 the rotation is clockwise
as shown in Figure D.9 and̃y (g) = ρ − ‖r (g)‖; if ϕ̃ > 0 the rotation is counter-clockwise from
the goal and̃y (g) = ‖r (g)‖ − ρ. The orientation error is̃θ (g) = θ − θ̂ (0)− s̄ϕ̃+ 2kπ, where the
integerk is chosen to yield a continuous function over the cell.

A necessary condition for a valid cell, that is one whose domain of attraction encompasses a
non-zero volume of pose space, is that the radius of the circular arc,ρ, is greater than the minimum
turning radiusρmin. Furthermore, the size of the boundedỹ-θ̃ slice will be smaller than for the
largest linear cell of the same system. This due to to impact of the frame derivatives; Section D.4
presents the formal calculations for the system models used in this thesis.

For tight turns, the ability to define significant funnel-like restrictions via (D.4) is limited due
to the necessity of maintaining conditional invariance and theF derivatives. For this reason, the
approach taken in this thesis is to use small tubes around arcs to prepare larger tubes around either
line segment or arc based cells, and use the funnel-like line-segment based cells to prepare the
smaller arc based cells.

ρ

r (g) ϕ

FigureD.9: Layout of the circular arc based cells.

c© 2007 David C. Conner 189

Figure D.10 shows an example cell; the relevant parameters are shown in TableD.2. The only
changes relative to Table D.1 are the arc angleϕ̃ and the radiusρ.

Table D.2: Schedule

Variable Description Range Figure D.10

s arc length parameter [0, 1] N/A
ggoal Configuration of goal set center ∈ Gfree {0, 0, 0}
ρ Radius of curvature (ρmin,∞) 0.7 m
ϕ̃ Arc length of curve (radians) (−π, π) −1.01 π

2

L Length along patĥp (s) Calculatedρ ϕ̃ 0.35π m

ρ̃ Radius of curvature forσ (0,∞) 2.45 m
ỹo Smoothing offset (0,∞) 0.025 m
ỹb Smoothing width Calculated 0.0501 m
θ̃b Smoothing height Calculated 0.143 m

∆θ̃B Blending offset
(

0, π2
)

≈ π
45

{ρUw , ρLw} Cell width (0, ỹo + ρ̃) 0.11 m
{ρU , ρL} Cell limit surface “curvature” (ρmin,∞) 2.45 m

{

θ̃Uoff
, θ̃Loff

}

Cell limit surface offset (0, π/2) π
50

As with the line segment based cell, the arc based cell can satisfy the requirementsof Sec-
tion 3.3. The test for inclusion is essentially the same; only the mapping into the local

(

Fỹ,Fθ̃

)

Figure D.10: PF arc-based cell formed by extruding the limit surfaces alongthe ĝ (s) path.

190 c© 2007 David C. Conner

frame varies. The expanded cell used to verify safety is likewise well defined.The cell is limited in
a way that guarantees instantaneous progress along the curve, so finite time is guaranteed provided
conditional invariance is verified. The test to verify conditional invariance is slightly more com-
plicated due to the derivatives associated with the moving frame, but is numerically tractable. The
remainder of this appendix presents the specific calculations for each system model required for a
circular arc based cell.

D.4 Policy Designs

This subsection presents the equations used in the control policy calculations; the policies determine
valid inputs from the bounded input setU . Recall from Chapter 5 and Appendix A, that the global
body pose velocity is given bẏg = A (q) ṙ. In the remaining discussion, we assume a first-order
kinematic system witḣr = u, which impliesġ = A (q)u. This section begins by providing an
overview of the calculations that apply to all of the robot models considered in this thesis. The
calculations and control strategies used for each model are then defined.

The variable structure control approach depends on a neutral steering policy that causes the
system to follow the sliding surface. Since the mappingA (q) is invariant under rigid body pose
transformations, and the control surfaces are defined in the local frameF , we derive the controls
in the local frame. For̃g =

(

x̃ (g) , ỹ (g) , θ̃ (g)
)

, let ˙̃g = F (g) · ġ; that is, ˙̃g is the pose velocity

expressed in the local frame. For the neutral steering policy to keep the system on the sliding

surface, the general constraint isDg̃Σ(g̃) · ˙̃g = 0 for all g̃ =
(

0, ỹ (g) , θ̃ (g)
)

∈ Σ−1 (0). Letting

ω = Dg̃Σ(g̃ (g)) · A (q̃) whereq̃ = (g̃, r), ω defines an equality constraint on the base velocities.
In other words, for a given pose on the sliding surface, to remain on the sliding surface the base
velocities must lie on the line through the base tangent space origin defined byω. By the chain rule,
Dg̃Σ(g̃ (g)) = DeΣ ·Dg̃e. The first term,DeΣ(gt) =

[

0 Dỹσ (ỹ) 1
]

is piecewise smooth. The
latter term,

Dg̃e =

Dx̃s̄ Dỹ s̄ Dθ̃s̄
Dx̃ỹ Dỹỹ Dθ̃ỹ

Dx̃θ̃ Dỹ θ̃ Dθ̃θ̃

 ,

whereDx̃ denotes the derivative alongFx̃ is calculated from the mappings given above. For the
line-segment based policy,

Dg̃e =

− 1
L

0 0
0 1 0
0 0 1

 ,

while for the arc-based policy

Dg̃e =

1
ρ|ϕ̃| s̄ 0 0

0 1 0
−1
ρ

0 1

,

The change inθ̃ as the robot moves alongFx̃ tangent to thêg (s) curve means that the robot
must steer just to maintain its current error. While the line-segment based policy can reason about
invariance based only on geometric considerations of the cell boundary and the minimum turning
radius, the arc-based policy must consider the kinematic model over the cell. This thesis uses a
variety of kinematic systems, each with differing control inputs, therefore each system model must
be discussed separately.

c© 2007 David C. Conner 191

D.4.1 Unicycle System / Vertical Rolling Disk / Differential-drive system

For the kinematic systems considered in this thesis, whereġ = A (q)u, the mappingA (q) is differs
only by a constant wheel radius factor for the kinematic unicycle system and vertical rolling disk
models defined in Appendix A. The mappingA (q) for the differential-drive system differs from
these two only by a constant change of coordinates. In each case, the mapping only depends on the
body orientation; to make this point clear, we abuse notation and letA (θ) = A (q).

The neutral steering policy defines a line through the input space origin,ω (g) = Dg̃Σ(g̃ (g)) ·
A
(

θ̃ (g)
)

. Any input chosen fromU alongω (g) ·u induces motion that holds the value ofΣ(g̃ (g))

constant. Depending on the sign ofΣ(g̃ (g)), one half of the input space divided byω (g) · u = 0
will decrease the magnitude ofΣ by moving the system pose toward the sliding surface. We modify
the sign ofω such that the negative half-space moves the system pose toward the sliding surface.
Let ωlim (g) define a constraint within theω− half-space that defines an aggressive steering set of
inputs in the direction that decreases|Σ(g̃ (g))|. That is,ωlim specifies hard left or hard right as
appropriate. Define the control constraint as

ωc (g) = ωlim (g) ·B (g̃ (g)) + ω (g) · (1 −B (g̃ (g))) .

These constraints are shown in Figure D.11. Letdω = dω (g̃ (g)) define a distance along the negative
of theωc vector, and define another constraint surface−ωc parallel toωc at a distancedω along the
−ω vector. As the pose approaches the sliding surface,B → 0 and the control constraintωc → ω
anddω → ǫ, whereǫ > 0 is a small number2. In this case, the control becomes less aggressive,

2As dc approachesthe limiting small number, theωc constraint movesǫ/2 in the positiveωc direction so that the
optimization lies on the originalω constraint surface

ω

−ωc

ωc

ωlim

dω

u1

u2

U

ω−
⋂U

Uc

ωs

FigureD.11: For the bounded steering unicycle and differential-drive systems, the control policy
constrains the input set based on the neutral steering policy and blending functionB. Any input
taken from the dark gray region labelUc will move the system toward the sliding surface.

192 c© 2007 David C. Conner

and set of valid control inputs is constrained to lie along the line defined byωc suchthat the system
follows the sliding surface. As the pose departs the blending zone away from the sliding surface,
B → 1, andωc → ωlim anddω increases to a distance equal to the diameter ofU .

The control input is chosen fromUc ⊂ U betweenωc (g) and−ωc (g), as shown in Figure D.11.
For the case whereU is a convex polygon, the regionUc is also a convex polygon. This lends
itself to simple convex optimization techniques [10]. Each edge in the bounded setU is treated as
a half-space constraint along withωc (g) and−ωc (g). The costs associated with approaching each
constraint are weighted. Most constraints have costs that increase rapidly as the input approaches
a constraint, but are negligible away from the constraint. A constraintωs (g) that is orthogonal to
ωc (g) is added to the input constraints as shown in Figure D.11; this constraint is associated with
a linear cost function that acts to push the input away from the origin. That is,ωs (g) acts to prefer
rapid motion. A quadratic term is added that weights changing the input from its previous value,
which provides a measure of smoothing to the approach. Additional terms are easily added to the
optimization cost function. As long as the input is taken fromUc, this control policy induces the
correct behavior over the cell.

D.4.2 Ackermann Steered Car-like system

The mappingA (q) for the Ackermann Steered car-like system depends on the steering angle shape
variable. This is a fundamental difference with the models for unicycle and differential-drive sys-
tems. In the case of the Ackermann steered car, the neutral steering policy is governed by the
steering angle, and is not directly tied to the inputs.

For the Ackermann steered car, the sliding surface is used to define a reference steering angle
over the cell. Define the neutral steering angle, that is the angle that holdsΣ(g̃ (γ)) constant as the

system moves as,φref (g̃) = tan−1 Y ′

X′ whereg̃ (g) =
(

0, ỹ (g) , θ̃ (g)
)

, X ′ =
D
θ̃
Σ(g̃)

L
andY ′ =

−Dx̃Σ(g̃) cos
(

θ̃ (g)
)

−DỹΣ(g̃) sin
(

θ̃ (g)
)

. Letφlim (g̃) denote the absolute steering limit for the

given vehicle, with the sign chosen based on whether the vehicle should steer right or left based on
its direction of travel and relationship to the sliding surface. If|φref (g̃)| > |φlim|, thenφref (g̃) =
sign (φref (g̃)) |φlim (g̃)|. This is necessary because the reference limit can be exceeded if the vehicle
is on the inside of a sharp turn; limiting the reference in this case will allow the car to move to the
arc, where the steering is within bounds. Defineφdes (g̃) = φref (g̃)·(1 −B (g̃))+φlim (g̃)·B (g̃) to
be desired steering angle over the cell. Steering according to the mappingφdes : Ξi → [−φlim, φlim]
will cause the system to move toward the sliding surface and alongĝ (s) toward the goal set.

In the case where the current steering angle does not match the desired steering angle, the
control policy must steer the vehicle in such a way that the vehicle converges to the goal set and
φdes without exiting the cell. Over the boundary of the cell, defineφexit (g̃) as the steering angle at
which the system would exit the cell; that is, the policy would violate conditional invariance. Define
the steering margin,

φmargin = min
g∈∂Ξi

|φexit (g̃ (g)) − φdes (g̃ (g))| .

Define the steering error,φerr (g, r) = φdes (g̃ (g)) − φ for the shape variablesr = (ψ, φ). If
|φerr (g, r)| < φmargin, then the system can safely move. Our control policy design is therefore a
switched policy. If|φerr (g, r)| > φmargin, the system stops and steers until|φerr (g, r)| < φmargin.
If |φerr (g, r)| < φmargin, then the control policy specifies inputs such that the vehicle steers fast
enough that|φerr (g, r)| monotonically deceases as the vehicle moves through the cell.

c© 2007 David C. Conner 193

Following the constrained optimization approach, letω (g) definea line through the input space
origin such that any input along this line will hold the steering error constant. The error time deriva-
tive φ̇err (g, r) = φ̇des (g̃ (g)) − φ̇ = 0, with φ̇des(g̃(g)) = Dg̃φdes (g̃ (g)) · ˙̃g (g) = Dg̃φdes (g̃ (g)) ·
A (q̃)u with q̃ = (g̃, r) andu =

(

ψ̇, φ̇
)

; thus,ω (g) = Dg̃φdes (g̃ (g)) · A (q̃) −
[

0 1
]

. One half-

space defined byω (g) will decrease the error magnitude; the other half-space will increase the error
magnitude. Ifω− decreases the error magnitude, then letωc = ω, otherwise letωc (g) = −ω (g), so
that the negative half-space decreases the steering error. Givenω (g) defined appropriately, define
−ωc (g), andωs (g) as in Figure D.11. The distancedc (g) between the control constraints±ωc is a
function of the steering error; that is, the constraints approach one another as the steering error goes
to zero.

Unlike the shape variables for the differential-drive and unicycle models, the steering angle is
bounded. The bounds include absolute mechanical bounds as inφlim; we also allow safety bounds
that require slower speeds for hard turns. To guarantee that the steering angle constraints are not vi-
olated, the steering constraints are mapped to velocity constraints given a nominal control time step,
∆t. Assume the steering angle constraints are represented by a collection of half-space constraints

each defined by a pointps =
(

ψ̇s, φs

)

and normalns = (nψ, nφ). The steering rate constraints

are given bypr (φ) =
(

ψ̇s,
φs−φ
∆t

)

andnormalns (φ) =
(nψ

∆t , nφ
)

. These constraints guarantee that

the steering angle will not exceed the steering limit during the next time step. With these added
constraints, the input optimization chooses an input from the valid set; the input will specify a for-
ward speed and steering rate such that the steering error monotonically decreases and the system
converges to the sliding surface while moving alongĝ (s) towards the goal set.

D.5 Policy Validation

Implicit in the constrained optimization approaches defined above is the existence of a valid input;
that is, the set of valid inputs,Uc, is not empty. During the policy instantiation, the policy must be
validated to insure that such an input exists for all poses over the cell. To start, we assume that the
ρ-terms used to bound the cells and define the sliding surface is larger than the minimum defined by
the input constraints.

D.5.1 Collision Free

For a cell to be valid, it must be collision free; that is, it must be contained in the free pose space.
This thesis uses the cell boundary normal to define a mapping from cell boundary to expanded
cell boundary based on the body shape. As the cell boundary is piecewise smooth with well-defined
surfaces, the expanded cell used to verify safety is well defined. This section presents the calculation
of the boundary normal used for policy validation; for details on the collision tests see Appendix C.

As the cell is a tube around the curveĝ (s), this suggests a cylindrical parameterization of the
cell boundary surface. Lets ∈ [0, 1] be the length along the cell defined as before, andγ be an angle
around the localFx̃-axis measured relative to the localFỹ axis. Letr̃ (s, γ) denote the three-vector
specifying the cell boundary in the local frame; by definition,r̃x̃ (s, γ) = 0. See Figure D.12 for
details. In the local frame, the boundary pointr̃ (s, γ) is determined for the piecewise differentiable
curves that define the cell boundary. The boundary point in the pose space is given bygc (s, γ) =
ĝ (s) + F (s) · r̃ (s, γ). For some of the limiting surfaces, for example the Lyapunov-like level set,
the width boundary, and the upper bound at±π

2 , r̃ is available in closed form givens andγ; for the
θ̃U andθ̃L, r̃ is determined numerically. Giveñr the derivatives are determined in closed form.

194 c© 2007 David C. Conner

ỹ

θ̃

r̃ (s, γ)

r̃ỹ (s, γ)

r̃θ̃ (s, γ)

γ

Figure D.12: PF cell boundary definitions for defining parameterized representation.

The normal of the parameterized surface representation is given byn (gc (s, γ)) = Dsgc×Dγgc.
The derivatives in terms ofs andγ are calculated according to the product rule; the derivatives of
each component are well defined almost everywhere. Note that,DγF = 0 andDγ ĝ = 0 by
definition, so thatDγgc = F ·Dγ r̃ (s, γ). The termsDsĝ andDsF are defined by the planar curve
used to specify the cell. At the interface between limiting surfaces, the derivativeDγ r̃, and hence
the normal, is not well defined. The termDsr̃ is zero along the cell boundary surface not limited
by the Lyapunov-like function; along the surface limited by the Lyapunov-like function it is well
defined. Thus, the normal can be calculated across the surface patches defined by individual curves.
The parameterized representation yields a parameterized representation for the expanded cell used
for collision testing.

D.5.2 Finite-time Convergence

The policies defined above guarantee convergence to the goal set in finite time. The inputu = 0 is
not allowed in the constrained input setUc. Thus, the kinematic systems are always moving. In the
case of an Ackermann steered car with significant steering error, the finite steering rate will bring
the system into the valid control zone|φerr| < φmargin in finite time. For all the systems described
above, the pose velocities are such that˙̄s < 0 for all valid inputs. This is due to the pose limitation

of
∣

∣

∣
θ̃
∣

∣

∣
< ±π

2 and the non-zero control input. Thus, the system will reachs̄ = 0 in finite time.

Note, the steering policy does not guarantee convergence to
{

ỹ, θ̃
}

= {0, 0} ats = 0; only that the

system is guaranteed to cross theFỹ-Fθ̃ plane that defines the cell goal set. Conditional invariance
guarantees that the policy stays within the cell, and is therefore within the goal set boundary.

D.5.3 Conditional Invariance

Invoking the steering control policy over the cell induces motion that moves along theĝ (s) curve to-
wards = 0; to show that the system enters the goal set and safely remains in the cell, the conditional
invariance requirement must be satisfied on the cell boundary.

c© 2007 David C. Conner 195

This property is dependent on the cell parameters chosen. Generally, forthe basic line-segment
based cells shown in Figure D.7 can be verified geometrically providedρ̃, ρ̃U , ρ̃L are properly de-
fined. The Lyapunov-like limiting surface, as do arc-based cells in general, use numerical validation
using the steering policy.

Verifying the conditional invariance requires knowledge of the surface normal across the cell
boundary; the normal is calculated as described in Section D.5.1. The parameterized representation
allows the boundary poses and normals to be checked for conditional invariance using the policies
defined below. Since the parameters are piecewise smooth, then surfaces are amenable to numeric
validation.

For the cell to be conditionally positive invariant, the induced velocity along the cell boundary,
excluding the goal set, must be inward pointing. That is, then (g) · ġ < 0 wheren (g) is the
outward pointing normal defined for the cell boundary. Thus, the conditional invariance requirement
is restated as a input constraint,n (g) · A (q)

⋂U 6= ∅. In other words, along the cell boundary, the
control policy design must choseu ∈ n (g) ·A (q)

⋂U .
Given the cell boundary parameterized byζ andγ, conditional invariance requires that

n (g (ζ, γ))T A (g (ζ, γ) , r)u < 0 (D.5)

for all ζ andγ over the cell boundary. LetΦΞi (g, r) denote the action of the policies designed
above such thatu = ΦΞi (g, r). Define

L (ζ, γ) = n (ζ, γ)T A ((g (ζ, γ) , rdes)) · ΦΞi (g (ζ, γ) , rdes) , (D.6)

whererdes represents the shape variable specified by the control policies. For Ackermann-steered
systems,rdes = rdes (g) = (∗, φdes (g)) with ∗ meaning thatψ is arbitrary. For car-like/differential-
drive systemsrdes = (∗, ∗).

L is the result of the “best” input choice at a particular pose; the more negative the value ofL,
the more inward pointing the pose velocity is along the boundary. Although non-linear, the function
L (ζ, γ) is piecewise smooth and generally “well-behaved” for the mappingA (q). A valid cell
satisfies the constraint

max
ζ,γ

L (ζ, γ) < 0 . (D.7)

Once the policy free parameters are chosen so that (D.7) is satisfied over the cell boundary, the
policy satisfies composability requirements(ii) andiii.

For Ackermann steered cars, the steering marginφmargin (g) is calculated during the conditional
invariance tests.

D.5.4 Simple Inclusion Tests

The cells have simple inclusion tests, and thus satisfy composability requirement(iv) described
in Section 3.3. A given robot poseg is mapped to the local pose error coordinates using simple
calculations for the line-segment and arc-based cells. Recall, that the error coordinates are given

by e (g) =
(

s̄ (g) , ỹ (g) , θ̃ (g)
)

. The robot pose is in the cell if0 ≤ s̄ < 1, −ρLw < ỹ < ρUw ,

θ̃L (ỹ) < θ̃ < θ̃U (ỹ), andV
(

s̄, ỹ, θ̃
)

< Vcell.

Since the cell is defined in anIR3 chart ofSE(2), we must also test for inclusion based on
g = {x, y, θ + 2nπ} wheren ∈ {−1, 0, 1}.

The policies can use a more conservative inclusion test during policy switching by decreasing
the policy width parametersρLw andρUw , which shrinks the ‘tube’ around the curveĝ (s).

196 c© 2007 David C. Conner

D.6 Conclusion

PF policies satisfy the composability requirements, and are therefore composable in our hybrid
control framework. The policies encode basic behaviors for robot navigation: turning in arcs and
moving straight. The policies admit tractable validation tests for instantiating policies.

The path following approach that these policies are based on is more general than just line-
segments and circular arcs defined here. A natural extension would define the policies for cycloids
and continuous curvature arcs [95]. These would allow smoother transitions between policies; the
difficulty comes in determining thēs for a given pose. The line-segments and arcs can do this in
closed form; continuous curvature arcs would require polynomial root finding techniques.

c© 2007 David C. Conner 197

199

Appendix E

‘SQ’ Style Control Policies

This section develops a class of generic policies based on a parameterized representation of the cell
boundary. First, the basic cell definitions are presented. Given the cell definition, the chapter next
discusses how the four composability requirements from Section 3.3 will be verified. These are
discussed before the specific control design in order to define some terms used in the control design.
The chapter concludes with a specific control design for these cells.

E.1 Cell Definition

This policy defines cells such that they fan out from the goal set using a generalization of a su-
perquadric surface [51]; hence, the name ‘SQ’. The cell is defined relative to a frame attached to the
goal set center as described in Section 5.3.

We define the generic cell boundary in local coordinates withtwo smooth two-surfaces embed-
ded inIR3. The intersection of the cell boundary with a plane orthogonal to the central axis is a
simple closed curve that may be parameterized by the orientation around thex′-axis. This suggests
a cylindrical parameterization for the generic cell boundary. Letζ be a scalar encoding the “depth”
of the cell along the negativex′-axis, and letγ be a scalar encoding the angle about the localx′-axis.
Define a generic cell boundary point,p, in these local coordinates as

p (ζ, γ) =

−ζ
ρ(ζ, γ) · (cosβ cos γ − c sinβ sin γ)
ρ(ζ, γ) · (sinβ cos γ + c cosβ sin γ)

 ∈ IR3 . (E.1)

The equations in parenthesis encode an ellipse with eccentricity0 < c < 1 rotated byβ about the
central (x′) axis relative to the positivey′-axis, as shown in Figure E.1-a. With0 < c < 1, the
conditional invariance velocity constraintn (g) · ġ < 0 requires that−π

2 < β < 0. The function
ρ (ζ, γ) governs the radius in the local cylindrical coordinate system as the system moves byζ along
the negativex′ axis, as shown in Figure E.1-b. This representation is an extension to the standard
superquadric representation becauseρ may be a function of bothζ andγ [51]. The goal set is
defined atζ = 0. A point p (ζ, γ) on the cell boundary in the local frame is mapped to the pose
space asg (ζ, γ) = g (p (ζ, γ)) using the generic cell transformation (5.2) from Section 5.3.

There is freedom in definingρ (ζ, γ) provided the velocity constraintn (g) · ġ < 0 can be
satisfied for all points on the surface. We choose aρ function that uses two continuous, piecewise-
smooth segments that correspond to the two surface patches – a funnel and a cap – defining the cell
boundary. The segments are shown in Figure E.1-b. In the portion corresponding to the funnel, let
ρf (ζ, γ) be a monotonically increasing function inζ that governs cell growth asζ increases away

θ′

y′

γ

β

a)Elliptical Parameters

ρ (ζ, γ)

θ′

x′

ζL
ζM

ggoal

b) ρ Parameters

Figure E.1: Schematic representations of the generic SQ cell. Some of the important parameters are
labeled.

from the policy goal set;ρ = ρf in this portion. The portion ofρ (ζ, γ) corresponding to the cap
section monotonically decreases from the maximal value ofρf to zero at the maximal extent ofζ.
Formally, define the complete function as

ρ (ζ, γ) =

{

ρf (ζ, γ) 0 < ζ ≤ ζL

ρf (ζL, γ)

√
(ζM−ζL)2−(ζ−ζL)2

ζM−ζL
ζL < ζ ≤ ζM

. (E.2)

Theγ dependency in ρf allows radial asymmetry to be built into the cells, providedρf is monotonic
in ζ. This paper defines three basic cell shapes by defining three differentρf functions; typical cell
shapes for the three functions are shown in Figure E.2.

The first cell shape, as defined byρf = ρf1 , results in the simple symmetric funnel shapes
shown in Figure E.2-a. Let

ρf1 (ζ, γ) = Ro +Re

(

cosh

(

ζ

Rr

)

− 1

)

,

whereRo is one-half the length of the major axis of the goal set ellipse, andRe andRr govern
the rate of expansion. Thecosh function gives good results, but other monotonic functions could
be used. For this choice, the cell size and shape is governed by the parameters ofρf1 , which are
Ro, Re, andRr, along with the parameters of the ellipsec andβ, the length of the cellζL andζM ,
and the location and orientation of the goal set given byggoal. At ζ = 0, the goal set is an ellipse
like that shown in Figure E.1-a. The composability requirements from Section 3.3 will dictate how
much the cell can grow, and its shape by limiting the parameter values.

The second cell shape, as defined byρf = ρf2 , is used to generate a one-sided asymmetric cell,
as shown in Figure E.2-b. Let

ρf2 (ζ, γ) = Ro +Re

(

cosh

(

ζ

Rr

)

− 1

)

· 1 + cos (γ − γa)

2
,

200 c© 2007David C. Conner

3D View 3D View 3D View

a) Cell usingρf1 b) Cell usingρf2 c) Cell usingρf3

FigureE.2: Example cells for eachρf showing 3D andx-y views.

whereRo,Re, andRr are as defined above, andγa is used to localize the asymmetry relative to the
angle about the central axis. As with the first function, the goal set atζ = 0 is an ellipse.

The third cell shape, as defined byρf = ρf3 , is used to generate a two-sided asymmetric cell,
as shown in Figure E.2-c. This cell is designed to generate a more aggressive turn than the first two
cells allow for a given input set. Let

ρf3 (ζ, γ) =

(

Ro +Re

(

cosh

(

ζ

Rr

)

− 1

))

·
(

1 +Kg1 exp

(

−(cos (γ − γg1) − 1)2

σg1

)

+ Kg2 exp

(

−(cos (γ − γg2) − 1)2

σg2

))

,

whereRo,Re, andRr are as defined above,Kg1 andKg2 specify the relative size for the two wings
of the cell,σg1 andσg2 specify the width of the wings, andγg1 andγg2 localize the wings relative to
the angle about the central axis. Unlike the first two functions, the goal set ofρf3 is not an ellipse.

E.2 Policy Validation

Given the classes of generic cells defined by the threeρf functions, it must be shown that particular
instantiations of the cells satisfy the composability requirements given in Section 3.3.

c© 2007 David C. Conner 201

E.2.1 Collision Free

We verify that the cell is contained in the free pose space, and is therefore safe, using the expanded
cell approach described in Appendix C. The test is for a specific cell using a particular choice of cell
parameter values,{Ro, Re, Rr, c, β, ζL, ζM} and optionally{γa} or {Kg1 , γg1 , σg1 ,Kg2 , γg2 , σg2}.
Using the parameterized representation of the cell boundary given in (E.1), the approach described
in Appendix C generates a representation ofR (Ξi). The setR (Ξi) is tested for intersection with
any obstacle. If intersection occurs, the cell parameter values must be modified.

The surface normal required for the expanded cell calculations is well defined over the para-
metric surface patches that define the cell boundary. The normal is calculated for the given set
cell parameter values asn (ζ, γ) =

Dζg×Dγg

‖Dζg×Dγg‖ . Both g (ζ, γ) andn (ζ, γ) are piecewise smooth

functions. Given the implicit representation of the robot body boundary, the cell boundary point is
analytically mapped to a point inR (Ξi), which allows the collision tests outline in Appendix C.

E.2.2 Conditional Invariance Test

During instantiation, the cell parameter values must be selected so that the control system can gener-
ate velocities that enforce conditional positive invariance as described in Section 3.3 and Section 5.4.

For the cell to be conditionally positive invariant, the induced velocity along the cell boundary,
excluding the goal set, must be inward pointing. That is, then (g) · ġ < 0 wheren (g) is the
outward pointing normal defined for the cell boundary. Thus, the conditional invariance requirement
is restated as a input constraint,n (g) · A (q)

⋂U 6= ∅. In other words, along the cell boundary, the
control policy design must choseu ∈ n (g) ·A (q)

⋂U .
Given the cell boundary parameterized byζ andγ, conditional invariance requires that

n (g (ζ, γ))T A (g (ζ, γ) , r)u < 0 (E.3)

for all ζ andγ over the cell boundary, andq = (g, r). Let ΦΞi (g, r) denote the action of the as yet
undefined control policy such thatu = ΦΞi (g, r). Define

L (ζ, γ) = n (ζ, γ)T A ((g (ζ, γ) , rdes)) · ΦΞi (g (ζ, γ) , rdes) , (E.4)

whererdes represents the shape variable specified by the control policies.
L is the result of the “best” input choice at a particular pose; the more negative the value ofL,

the more inward pointing the pose velocity is along the boundary. Although non-linear, the function
L (ζ, γ) is piecewise smooth and generally “well-behaved” for the mappingA (q). A valid cell
satisfies the constraint

max
ζ,γ

L (ζ, γ) < 0 . (E.5)

Although non-linear, the functionL (ζ, γ) is piecewise smooth and generally “well-behaved”
for the mappingA(g); therefore, it is feasible to verify that (E.5) is satisfied for a given set of cell
parameter values. Figure E.3 shows a typical constraint surface for the cell shown in Figure 5.9-a.
The ridges shown in the figure are due to switching behavior in the minimization that occurs when
the cell boundary normal is parallel to thex-y plane; that is the component in theθ direction is zero.

Once the policy free parameters are chosen so that (E.5) is satisfied, the conditional invariance
requirement is satisfied. The companion requirement of finite time convergence is discussed with
the specific policy designs.

202 c© 2007 David C. Conner

0
2

4

−2
0

2

−0.4

−0.2

0

ζγ

L

Figure E.3: Constraint surface forL (ζ, γ) from (E.4).

E.2.3 Simple Inclusion Tests

Given a cell, the system must check if the current robot position and orientationg ∈ G is inside the
cell. The inclusion test makes use of the cylindrical representation of the cell. Givenq = {g, r} ∈ Q
and a selected cell, representg in the local cylindrical coordinate frame of the cell as{ζg, γg, ρg},
whereζg is the distance fromggoal along the central axis,γg is the angle relative to the ellipse major
axis, andρg is the radial distance from the cell’s central axis. Since the cell is defined in anIR3 chart
of SE(2), we must also test for inclusion based ong = {x, y, θ + 2nπ} wheren ∈ {−1, 0, 1}.

The inclusion test uses two steps. The first step tests that0 < ζg < ζM ; if ζg ≤ 0 or ζg ≥ ζM
then the point is outside the cell. If the point passes the first test, then find the cell boundary point,

pb

ρb
θ′

x′

ggoal

ζg

g

Figure E.4: Corresponding boundary points. Given a pointg, determine its local cylindrical coordi-
nates,{ζg, γg, ρg}, and find the corresponding pointpb = {ζg, γg, ρb} on the cell boundary.

c© 2007 David C. Conner 203

pb = {ζg, γg, ρb} that corresponds tog = {ζg, γg, ρg}, whereζg andγg are the same andρb is
the radius of the boundary point along the vector defined byζg andγg. These points are shown in
Figure E.4. From (E.1), the value ofρb is given as

ρb (ζg, γg) =

∥

∥

∥

∥

[

ρ(ζg, γg) · (cosβ cos γg − c sinβ sin γg)
ρ(ζg, γg) · (sinβ cos γg + c cosβ sin γg)

]∥

∥

∥

∥

= ρ (ζq, γq)

√

1 + c2 − (c2 − 1) cos (2γg)√
2

. (E.6)

If ρq < ρb and0 < ζq < ζM , the configuration is within the cell.

E.3 Policy Design

This chapter discusses two potential control designs for these SQ cells. Provided the conditional
invariance properties are satisfied, it is possible to define a sliding surface, and use the variable
structure control approach of Section D.4. In this section, we focus on a different technique based
on level set control. At present this approach is limited to systems where the mappingA (q) does not
depend on the shape variables; to stress this point, this section abuses notation and writesA(g) =
A (q).

To define the control law, we use a family of level sets based on the cell boundary parameteriza-
tion given in (E.1). This family of level sets is used to define a control vector field that flows to the
policy goal set. Forg ∈ Ξi, the corresponding level set that passes throughg must be determined;
representg in the local cylindrical representation ofΞi by g̃ (g) = {ζg, γg, ρg}.

Recast the cell definition equations given in (E.1) and (E.2) in terms ofζ ′M andζ ′L to differentiate
the control level sets from the cell boundary. These parameters control the relative length and size
of the internal level set. Asg ∈ Ξi, the values will have the following relationship0 ≤ ζ ′L ≤ ζg ≤
ζ ′M ≤ ζM . The family of level sets used for control are defined by (E.1) withρ (ζg, γg) = ρL (ζg, γg)
where

ρL (ζg, γg) = ρf
(

ζ ′L, γg
)

√

(

ζ ′M ,−ζ ′L,
)2 −

(

ζg − ζ ′L,
)2

ζ ′M ,−ζ ′L,
. (E.7)

That is, the control level set is governed the by (E.2), withρf (ζ ′L, γg) using the same parameter
values as those defining the cell boundary.

First consider the caseζ ′M ,= 0 andζ ′L,= 0, the level set defined byζg = 0 andγg ∈ (−π, π]
corresponds to the policy goal set. Increasingζ ′M , while fixing ζ ′L = 0, generates a family of level
sets for0 ≤ ζg ≤ ζ ′M that grow out from the goal; these are termed theinner level sets, as shown
in Figure E.5. By fixingζ ′M at its maximum value,ζ ′M = ζM , and increasingζ ′L, theouter family
of level sets grows; these are also shown in Figure E.5. Thus, giveng̃ (g) = {ζg, γg, ρg}, the values
for ζ ′M andζ ′L must be determined such that the level set passes throughg. For this to be the case,
ρL (ζg, γg) = ρg; thus values forζ ′M andζ ′L that satisfy

ρf
(

ζ ′L, γg
)

√

(

ζ ′M − ζ ′L
)2 −

(

ζq − ζ ′L
)2

ζ ′M − ζ ′L
− ρq = 0 (E.8)

mustbe found.
For configurations within the inner family of level sets,ζ ′L = 0 and ζ ′M can be determined

in closed-form from (E.8). If the configuration is within the outer family of level sets, as shown in

204 c© 2007 David C. Conner

Outer level sets

Inner level sets

g

ζg

ζ ′L

FigureE.5: Level set definition for control

Figure E.5, thenζ ′M = ζM and we must determine the value ofζ ′L that satisfies (E.8). Unfortunately,
ζ ′L cannot be found in closed form. Fortunately, (E.8) is a monotonic function ofζ ′L, which admits
a simple numeric root finding procedure.

Given the values ofζ ′M andζ ′L, the level set normal is used to define a constrained optimization
over the input space. The level set normaln (ζg, γg) is defined as in Section E.2.1 using (E.1) and
(E.7). The simplest constrained optimization is

u∗ = arg min
u∈U

[n (ζg, γg) ·A (g (ζg, γg))u] s.t. n (ζg, γg) ·A (g (ζg, γg))u < 0. (E.9)

For a convex polygonal input setU , the solution to this optimization will lie at the vertices ofU . To
smoothu∗, the cost function,[n (ζg, γg) ·A (g (ζg, γg))u], can be augmented by a simple quadratic
term. LetΦΞi (g) denote the control policy using this strategy; that isu = ΦΞi (g) = u∗, whereu∗

is defined by (E.9).
Usingu = ΦΞi (g) as the control input drives the system from the outer level sets to the inner

level sets, and then continuously on to the goal. We force all the inner and outer level sets to satisfy
the conditional invariance requirements for (E.5) at every point in the cell, which guarantees that a
solution to (E.9) exists. The body velocityġ = A(g) · ΦΞi (g) will bring the system configuration
to a “more inward” level set; thus, the system moves a finite distance closer to the goal. Although
a formal analytic proof is lacking, experience shows that if the outermost level set corresponding to
the cell boundary satisfies conditional invariance underΦΞi (g), all interior level sets will also satisfy
conditional invariance. This can be checked for various values ofζM andζL during deployment.

E.4 Conclusion

SQ policies satisfy the composability requirements, and are therefore composable in our hybrid con-
trol framework. The policies are naturally shaped like funnels; however, the conditional invariance
constraints limit the size and shape of the cells. Thus, they can be limited, and not able to define as
tight a turning radius when compared to the PF policies.

c© 2007 David C. Conner 205

207

Appendix F

Robots Used in Demonstrations

The hybrid control approach advocated in this thesis, which is described in Chapter 3 and Chapter 5,
has been validated on several robot systems in different environments. Although the techniques
apply to any single-bodied purely-kinematic system, this thesis uses three particular robot models.
Two are real differential-drive robots that vary in size and shape; the third is a simulated conventional
Akermann-steered rear-wheel drive car-like system. This appendix provides details on the particular
robots by discussing the body size and shape, the control limitations, and modeling assumptions.

F.1 ‘Deminer’ Differential-drive Robot

The first tests use the standard differential-drive robot shown in Figure F.1, which has a convex,
roughly elliptical body shape. This is called the ‘Deminer’ robot. To simplify calculations of
R (Ξi), the composite set of points occupied by the robot body over all positions and orientations in
the cell, the robot body and wheels are tightly approximated by an analytic ellipse centered in the
body coordinate frame; this is shown in Figure F.2. The length of the major and minor axes of the
bounding ellipse are1.12 and0.68 meters respectively.

The robot is driven by the larger front wheels. The wheels are individually controlled using PID
velocity loops that send commands to individual H-bridge amplifiers. The control loop runs at 100
Hz, with velocity feedback given by encoders attached to the motors. The system assumes that the
velocity control is fast relative to the system dynamics.

Figure F.1: ‘Deminer’ laboratory robot

−0.5 0 0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

m
et

er
s

meters

Figure F.2: ‘Deminer’ laboratory robot bounding ellipse

Thehybrid control policies use the simplified kinematic unicycle model for control. The con-
nection is given by

A (q) =

cos θ 0
sin θ 0

0 1

 .

The inputsu =
[

v ω
]T

are forward velocity,v, in meters per second, and turning rate,ω, in radians
per second. Given a specified input, the desired wheel velocities are determined. The policies could
have used the differential-drive model as the models are interchangeable by a simple change of
coordinates; the kinematic unicycle model was initially chosen because of the direct analogy to
body velocities.

−0.4 −0.2 0 0.2 0.4 0.6
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

v meters/s

ω
ra

di
an

s/
s

Aggressive
Cautious
Reverse Aggressive
Reverse Cautious

Figure F.3: Four sets of bounded steering inputs used in Deminer experiments. .

208 c© 2007 David C. Conner

The inputs, which induce the body pose velocityġ = A (q) u, arechosen from one of four
bounded input sets shown in Figure F.3. The system changes direction by switching between “For-
ward” and “Reverse” input sets; each having an “Aggressive” and “Cautious” set of values. The
numerical values are based on the velocity limits of the motors, and scaled back for cautious modes
and the reverse input sets. Each policy is associated with a specific choice of input set, which al-
lows the system to account for local conditions. Although the robot is capable of zero-radius turns,
the input bounds are chosen to model a conventional car-like system with bounded steering. The
input bounds are convex polygons; this restriction is for computational convenience and allows the
convex optimization technique discussed in Appendices D and E. The restriction to polygons is not
fundamental.

The robot sensors consist of optical encoders attached to the drive motors and a single forward-
facing camera. The encoders are used to provide velocity feedback, which in turn provides the
inputs for a dead-reckoning pose estimation. An existing vision based localization scheme was
tested on the system, but the accuracy was insufficient to allow for indoor navigation in cluttered
environments. For this reason, the early experiments used pure dead-reckoning for localization.

The robot software executive is coded in C++ within the modular RHexLib framework [119].
The system includes modules for velocity calculations and localization, as well as the PID velocity
control modules. The executive itself is coded as a RHexLib module. On initialization, the module
reads a set of configuration files that specify the input bounds, the policy definitions, the initial pose
of the robot, and the desired goal policy. The executive then uses an implementation of the mini-
max D*-lite algorithm to order the policies [81]. During execution, the executive chooses the active
policy and calculates the desired inputsv andω. These are converted to individual wheel velocity
commands that are passed to the PID velocity control modules. The entire system runs at a 100 Hz
update rate on a Pentium-based PC-104 computer operating under the QNX operating system.

c© 2007 David C. Conner 209

F.2 ‘LAGR’ Differential-drive Robot

TheLAGR robot, shown in Figure F.4, is used in the majority of actual experiments shown in this
thesis. An extended Kalman filter based localization system uses encoder-based velocity measure-
ments to predict the system pose based on dead-reckoning, and updates the pose estimate based
estimates of range and bearing to known landmarks [22]. The update step also uses a pose change
estimate based on an inertial measurement unit. The positions of the landmarks relative to the robot
are estimated by a custom set of four stereo camera pairs. The stereo cameras are mounted at 90 de-
grees from one another, which provides a near 360 degree field of view. The robot sensing package
also includes the Global Positioning System (GPS) antenna shown in Figure F.4; GPS signals are
not used for indoor localization.

This localization approach provides reasonably accurate pose estimates for the experiments.
During execution, the pose estimate does experience jumps of several centimeters as new landmarks
are detected and old ones disappear from view. These jumps are disturbances to the control system.
The system does not have ground truth comparisons, so the effectiveness is qualitatively judged by
the long runs shown in the experiments of Chapter 6. The overall performance is consistent across
multiple loops around the hallways.

The robot mechanical system is a standard differential-drive system with two drive wheels and
two smaller rear caster wheels. Figure F.5 shows the system with the bounding convex polygon used
for estimatingR (Ξi). The system is approximately 1.23 meters by 0.79 meters with approximately
1 meter of extension behind the drive wheels. The area swept by the robot during turns is significant;
the collision tests developed in this thesis allow policies to be deployed that guarantee safety.

The robot is driven by two 24 volt motors attached to the large pneumatic tires in the front.
These tires provide motive force to the system. Two rear caster wheels provide stability, but also act
as a significant disturbance as discussed later in this section. The 4096 count/revolution encoders,
which are used to provide velocity estimates, are attached directly to the drive wheel axles. This

Figure F.4: The LAGR robot uses four stereo cameras to perform vision basedlocalization while
navigating. Three color-coded landmarks, which are used by the vision based localization system,
are visible in the image.

210 c© 2007 David C. Conner

−0.8 −0.6 −0.4 −0.2 0 0.2

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

m
et

er
s

meters

Figure F.5: The ‘LAGR’ robot with bounding polygon shown. The boundingpolygon is used to
guarantee the safety of a policy without being overly conservative.

provides significantly less velocity resolution than if the encoders were attached to the motor and
had the advantage of the added gear ratio. Velocity estimates are noisy at lower speeds.

The velocity estimates are based on the difference between encoder counts divided by the
elapsed time between encoder count samples. To smooth the estimates, the calculations use an
adaptive windowing technique. The velocity calculations are made at 100 Hz; however, if the sys-
tem is moving slowly the encoder count difference may be taken with respect to an encoder sample
taken up to 0.05 seconds previously. The window size is based on the number of elapsed encoder
counts; at least 50 counts uses a 0.01 second window, at least 33 counts uses a 0.02 second window,
at least 20 counts/0.03 seconds, and 10 counts/0.04 seconds, to a maximum of 0.05 second window.
This windowing technique smoothes the data somewhat, but introduces some delay with respect to
the true velocity.

The motor control hardware is customized. The standard LAGR motor controller is limited in
resolution to 7-bits and a maximum update rate of approximately 62 Hz. This control ability proved
insufficient for two reasons. First, the noisy velocity signals limited the control gains that could be
applied. Second, the caster wheel drag acts as a significant disturbance during turns. These factors
resulted in significant overshoot when turning, and prevented the robot from operating according to
the kinematic assumption used in the policy design. To improve the control response, the original
motor control amplifier was replaced with a microprocessor and two H-bridge amplifiers. This allow
the control signal resolution to be increased to 10-bits, and the update rate to be increased to 100
Hz.

With the customized motor controller, the motor velocities are governed via a low-level PID
control loop for each wheel. The PID loop runs at 100 Hz, and specifies a PWM duty-cycle to
the H-bridges connected to each motor. The velocity control used a PID approach with additional
feed-forward terms. Due to the relatively noisy velocity signals, a gain scheduling approach was
used based on the desired wheel velocities.

While this customized control has better response than the standard LAGR control hardware, the
LAGR robot still did not provide accurate velocity tracking. Figure F.6 shows the wheel velocities
and body velocities for the first 10 seconds of the experiment shown in Figure 6.15-d. The velocity

c© 2007 David C. Conner 211

0 2 4 6 8 10

−0.05

0

0.05

0.1

0.15

0.2

0.25

time (seconds)

ve
lo

ci
ty

 (
m

/s
)

Forward Velocity

0 2 4 6 8 10

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

time (seconds)

ve
lo

ci
ty

 (
ra

di
an

/s
)

Turning Rate

0 2 4 6 8 10

−0.3

−0.2

−0.1

0

0.1

0.2

time (seconds)

ve
lo

ci
ty

 (
m

/s
)

Left Wheel

0 2 4 6 8 10

−0.2

−0.1

0

0.1

0.2

0.3

time (seconds)

ve
lo

ci
ty

 (
m

/s
)

Right Wheel

FigureF.6: The velocity response for the first 10 seconds of an actual run of our hybrid control policy
as shown in Figure 6.15-d. The smoother light colored lines represent the commanded velocity, the
noisier darker lines show the velocity estimates based on encoder feedback.

tracking errors can be traced to noisy velocity estimates, limited PID control gains, and significant
disturbances during turns due to the caster wheels and wide pneumatic tires. While the robot is a ro-
bust mechanical platform for its intended purpose of outdoor navigation in rough terrain, the system
is not well suited for precision high-speed navigation in confined environments. Although the sys-
tem violates the assumptions of our kinematic control policies, the mostly successful experiments
of Chapter 6 show the robustness of the hybrid control approach advocated in this thesis.

The control approach is the same as for the Deminer robot. The hybrid control policies use the
kinematic unicycle model with forward velocity and turning rate as inputs, and then calculates the
desired individual wheel speeds that are passed to the PID control loops. The hybrid control polices
chose from one of twelve bounded input sets and one ‘Halt’ policy. Figure F.7 shows the collection
of input setsUi used for the simulations; for the experiments the forward velocities are further
reduced by 50 percent due to the control difficulties highlighted above. The ‘Straight’ input sets are
used for PF policies based on straight line segments; these input sets reduce the aggressiveness of
steering to avoid oscillations caused by the caster wheel drag during aggressive turns. The ‘Turn’
input sets allow more aggressive turns and reduce forward speeds; this allows the system to encode
“slow down while turning” for policies that do aggressive turns.

212 c© 2007 David C. Conner

−0.4 −0.2 0 0.2 0.4 0.6
−1

−0.5

0

0.5

1

v meters/s

ω
ra

di
an

s/
s Aggressive

Cautious
Reverse Aggressive
Reverse Cautious
Straight
Straight Cautious
Reverse Straight
Reverse Straight Cautious
Turn
Slow Turn
Reverse Turn
Reverse Slow Turn

Figure F.7: Twelve sets of bounded steering inputs

Therobot computing is divided between four separate computers connected via hardwired net-
work connections. The low-level control is governed by a process running on one computer. This
controller process handles velocity estimate calculations, accepts velocity commands, and calculates
the voltage duty cycle using the local PID loops. The duty cycle is communicated to the micropro-
cessor via a serial link; the microprocessor governs the pulse width modulation of the H-bridges.
Two computers are responsible for running the four vision processes, one for each stereo pair, that
detect landmarks and estimate range and bearing. The bearing, range, covariance estimates, and
associated landmark ID are passed to the localization process running on the fourth computer. The
localization process uses velocity updates from the controller process to predict the robot motion.
The landmark information from the vision processes maps to a known location via the landmark
ID; this information along with data from the IMU is used in a correction step of the Kalman filter
based pose estimation. The estimated pose is passed to the robot software executive process run-
ning on the same computer. Upon receipt of a new pose estimate, the software executive determines
the appropriate local policy, calculates a new control input command, and passes the desired wheel
velocity to the control process.

The robot software executive process, which is coded in C++, runs within the standard LAGR
process manager. The executive coordinates reading the configuration files, initializing the robot
pose, and coordinating policy switching. The same executive is used for both order-based execu-
tion using D*-lite and automata-based execution using a synthesized automaton. The automata are
synthesized before execution, and read in from a configuration file.

The simulations of the LAGR robot shown in Chapter 6 are run with the same executive code.
Instead of using the vision based localization and PID control, the velocity commands are passed
to a function that does numerical integration to provide localization. The function simulates delays
between the desired velocity calculation and the actual velocity, and simulates delays between the
actual pose and the estimate passed to the executive functions. This simulation allows the actual
robot code to be tested prior to execution on the robot, and also allows simulations of the policies
with ideal kinematics. The simulations assume a 50 Hz control update, with a numerical integration
of configuration velocities at a 0.001 second time step. A delay between control calculation and
velocity response of 0.02 seconds was modeled.

c© 2007 David C. Conner 213

F.3 Ackermann Steered Car-like Robot

Theparking and traffic simulations in Chapter 6 use a model of an Ackermann steered car. This is
one of the more complex kinematic models for single bodied nonholonomic systems. This section
provides an overview of the specific model used.

The vehicle simulations take place in an environment shown in Figure 6.27. The roadway lanes
and parking spaces in these two urban blocks are sized using “green practice” standards1, which
result in narrower roadways than standard highways. The parking spaces are6.86 × 2.44 meters.
The roadway lanes are5.49 meters from centerline to curb, leaving just under3.05 meters for the
driving lane. To make the parking problem more challenging, the robot system is modeled on a
“mini-van”, which is a relatively large vehicle as shown in Figure F.8. The size is approximately
5.1 meters by 1.85 meters.

The system model is that of a kinematic Ackermann-steered car as described in Appendix A.4.3.
This rear-wheel drive model assumes the reference point is attached to the center of the rear axle.
The mappingA (q) : U → TqG is given by

A (q) =

R cos θ 0
R sin θ 0
R
L

tanφ 0

 , (F.1)

whereR = 0.406 meters is the drive wheel radius andL = 3.00 meters is the wheelbase. The
inputs areu =

[

ψ̇ φ̇
]T

whereψ̇ is the rear drive wheel speed andφ̇ the rate of change of the
steering angle. Note the dependence ofA (q) on the steering angle.

The steering angle is limited, which limits the turning rate of the vehicle. The vehicle turning
circle, defined as the circle traced by the wheel farthest from the center of turning, is approximately
11.2 meters in diameter. This translates to a steering angle limit of 0.66 radians or 37.8 degrees. The

1http://www.nahbrc.org/greenguidelines/userguidesite innovative.html

Figure F.8: The body plan of the Ackermann steered mini-van. The inputs are thedrive speed of the
rear wheels and the rate of steering angle change. The robot body is bounded by a polygon, which
is used in the estimates ofR (Ξi). The extension of the tires beyond the robot body is ignored.

214 c© 2007 David C. Conner

steering angle is further limited at higher speeds to enforce a safety factor thatencodes “slow down
while turning.” Figure F.9 shows four different bounded sets that are associated with four different
input sets.

The system uses four different input sets for the local control policies, as shown in Figure F.10.
During execution, the hybrid control policies chose a drive speed and steering rate that is applied to
the system. To enforce the steering limits shown in Figure F.9, the input set is further constrained
during execution. The steering angle bounds are converted to rate limits using the formulaφ̇i =
φi−φ
∆t , whereφ̇i is a vertex of the new rate bounds,φi is a vertex on the steering angle bounds

from Figure F.9, and∆t is the nominal control update rate. The resulting vertices are converted to

−20 −10 0 10 20 30
−1

−0.5

0

0.5

1

ψ̇ radians/s

φ
ra

di
an

s

Aggressive
Cautious
Reverse Aggressive
Reverse Cautious

Figure F.9: The steering angle is limited as a function of forward velocity for safety.

−20 −10 0 10 20 30
−4

−2

0

2

4

ψ̇ radians/s

φ̇
ra

di
an

s

Aggressive
Cautious
Reverse Aggressive
Reverse Cautious

Figure F.10: The steering rate as a function of forward speed.

c© 2007David C. Conner 215

half-space constraints and added to the input constraints for the control optimization.These added
velocity constraints guarantee that steering angle limit is not exceeded during the next time step.

The Chapter 6 simulations are executed using code written in MatlabTM . The simulations as-
sume the pose is fully known, and the control is exact without delay. The simulations assume a 100
Hz control update, with a numerical integration of configuration velocities at a 0.001 second time
step.

216 c© 2007 David C. Conner

217

Bibliography

[1] A. M. Bloch et al. Nonholonomic Mechanics and Control. Springer, 2003.

[2] Fabio Ancona and Alberto Bressan. Patchy Vector Fields and Asymptotic Stabilization.
ESAIM: Control, Optimization, and Calculus of Variations, pages 445–471, 1999.

[3] Kwok Wai Au and Yangsheng Xu. Path Following of a Single Wheel Robot. InIEEE Confer-
ence on Robotics and Automation, pages 2925–2930, San Francisco, CA, USA, April 2000.

[4] A. Balluchi, A. Bicchi, A. Balestrino, and G. Casalino. Path Tracking Control for Dubin’s
Car. InIEEE International Conference on Robotics and Automation, pages 3123–3128, Min-
neapolis, MN, 1996.

[5] J. Barraquand and J.C. Latombe. Nonholonomic Multibody Robots: Controllability and Mo-
tion Planning in the Presence of Obstacles.Algorithmica, 10:121–155, 1993.

[6] Richard Bellman.Dynamic Programming. Princeton University Press, 1957.

[7] Calin Belta, Volkan Iser, and George J. Pappas. Discrete Abstractions for Robot Planning
and Control in Polygonal Environments.IEEE Transactions on Robotics, 21(5):864–874,
October 2005.

[8] William M. Boothby.An Introduction to Differentiable Manifolds and Riemannian Geometry
. Academic Press, 1986.

[9] Johann Borenstein and Y. Koren. The Vector Field Histogram - Fast Obstacle Avoidance for
Mobile Robots.IEEE Transactions on Robotics and Automation, 7(3):278–288, June 1991.

[10] Stephen Boyd and Lieven Vandenberghe.Convex Optimization. Cambridge University Press,
March 2004.

[11] Michael S. Branicky. Stability of Switched Hybrid Systems. InProceedings of the 33rd Con-
ference on Decision and Control, pages 3498–3503, 1994.

[12] Michael S. Branicky.Studies in Hybrid Systems: Modeling, Analysis, and Control. PhD the-
sis, MIT, Dept. of Elec. Eng. And Computer Sci., June 1995.

[13] Michael S. Branicky. Multiple Lyapunov Functions and Other Analysis Tools for Switched
and Hybrid Systems.IEEE Transactions on Automatic Control, 43(4):475–482, April 1998.

[14] Michael S. Branicky. Behavioral Programming. InWorking Notes AAAI Spring Symp. on
Hybrid Systems and AI, Stanford, CA, March 1999.

[15] Michael S. Branicky and Gang Zhang. Solving Hybrid Control Problems:Level Sets and Be-
havioral Programming. InProc. American Control Conference, pages 1175–1180, Chicago,
IL, June 2000.

[16] Karl Brauer. All Lined Up. http://www.edmunds.com/ownership/techcenter/articles/43858/article.html,
November 2007.

[17] O. Brock and L. E. Kavraki. Decomposition-Based Motion Planning: A Framework for Real-
Time Motion Planning in High-Dimensional Configuration Places. InProceedings of The
2001 IEEE International Conference on Robotics and Automation (ICRA), pages 1469–1475.
IEEE Press, May 2001.

[18] R. W. Brockett. Asymptotic Stability and Feedback Stabilization. In Roger W. Brockett,
Richard S. Millman, and Hector J. Sussmann, editors,Differential Geometric Control Theory,
pages 181–191. Birkhauser Boston, 1983.

[19] Rodney A. Brooks. A Robust Layered Control System for a Mobile Robot.IEEE Transac-
tions on Robotics and Automation, 2:14–23, 1986.

[20] Randall E. Bryant. Graph-Based Algorithms for Boolean Function Manipulation.IEEE
Transactions on Computers, 35(8):677 – 691, August 1986.

[21] R. R. Burridge, A. A. Rizzi, and D. E. Koditschek. Sequential Composition of Dynamically
Dexterous Robot Behaviors.International Journal of Robotics Research, 18(6):534–555,
1999.

[22] Howie Choset, K. M. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. E. Kavraki, and
S. Thrun.Principles of Robot Motion: Theory, Algorithms, and Implementations. MIT Press,
2005.

[23] Edmund. M. Clarke and O. Grumberg D.A. Peled.Model Checking. MIT Press, Cambridge,
Massachusetts, 1999.

[24] David C. Conner, Hadas Kress-Gazit, Howie Choset, Alfred A. Rizzi, and George J. Pappas.
Valet Parking Without a Valet. In2007 IEEE/RSJ International Conference on Intelligent
Robots and Systems, October 2007.

[25] David C. Conner, Alfred A. Rizzi, and Howie Choset. Composition of Local Potential Func-
tions for Global Robot Control and Navigation. InIEEE/RSJ Int’l. Conf. on Intelligent Robots
and Systems, pages 3546 – 3551, Las Vegas, NV, October 2003.

[26] David C. Conner, Alfred A. Rizzi, and Howie Choset. Construction and Automated De-
ployment of Local Potential Functions for Global Robot Control and Navigation. Techni-
cal Report CMU-RI-TR-03-22, Carnegie Mellon University, Robotics Institute, Pittsburgh,
Pennsylvania, USA, 2003.

[27] C. I. Connolly and R. A. Grupen. Nonholonomic Path Planning Using Harmonic Functions.
Technical Report 94-50, UMass Computer Science, 1994.

[28] DARPA. Urban Grand Challenge, 2007. [Online; accessed 19-November-2007].

[29] C. Canudas de Wit and R. Roskam. Path Following of a 2-DOF Wheeled Mobile Robot
under Path and Input Torque Constraints. InIEEE International Conference on Robotics and
Automation, pages 1142 – 1146, April 1991.

218 c© 2007 David C. Conner

[30] R. DeCarlo, M. Branicky, S. Pettersson, and B. Lennartson. Perspectives and Results on the
Stability and Stabilizability of Hybrid Systems.Proceedings of the IEEE, Special Issue on
Hybrid Systems, 88(7):1069–1082, July 2000.

[31] R. DeCarlo, S.H. Zak, and G.P. Matthews. Variable Structure Control of Nonlinear Multi-
variable Systems: A Tutorial.Proceedings of the IEEE, 76(3), March 1988.

[32] F. Diaz del Rio, G. Jimenez, J. L. Sevillano, S. Vicente, and A. Civit Balcells. A General-
ization of Path Following for Mobile Robots.Journal of Robotic Systems, 18(7):325 – 342,
2001.

[33] A. Deluca, G. Oriolo, and C. Samson.Robot Motion Planning and Control, chapter Feedback
Control of a Nonholonomic Car-Like Robot, pages 171–254. Springer-Verlag, 1998.

[34] E. Allen Emerson. Temporal and Modal Logic. InHandbook of theoretical computer science
(vol. B): formal models and semantics, pages 995–1072. MIT Press, Cambridge, MA, USA,
1990.

[35] Lawrence C. Evans.Partial Differential Equations. American Mathematical Society, Provi-
dence, RI, 1998.

[36] George Fainekos, Hadas Kress-Gazit, and George J. Pappas. Hybrid Controllers for Path
Planning: A Temporal Logic Approach. InIEEE Conference on Decision and Control,
Seville, Spain, 2005.

[37] George Fainekos, Hadas Kress-Gazit, and George J. Pappas. Temporal Logic Planning for
Mobile Robots. InIEEE Conference on Robotics and Automation, Barcelona, Spain, 2005.

[38] Dieter Fox, Wolfram Burgard, and Sebastian Thrun. The Dynamic Window Approach to
Collision Avoidance.IEEE Robotics and Automation Magazine, March 1997.

[39] Th. Fraichard. Motion Planning for Autonomous Car-Like Vehicles. Ercim News (42):26-28,
July 2000.

[40] Th. Fraichard and H. Asama. Inevitable Collision States: A Step Towards Safer Robots? In
Proc. of the IEEE-RSJ Int. Conf. on Intelligent Robots and Systems, Las Vegas, NV (US),
October 2003.

[41] E. Frazzoli, M.A. Dahleh, and E. Feron. Maneuver-Based Motion Planning for Nonlinear
Systems with Symmetries.IEEE Transactions on Robotics, 21(6):1077–1091, December
2005.

[42] C. E. Garcia, D. M. Prett, and M. Morari. Model Predictive Control: Theory and Practice –
A survey.Automatica, 25(3):335–348, 1989.

[43] Geoffrey Gordon. Stable Function Approximation in Dynamic Programming. InProceedings
of IMCL ’95, 1995.

[44] Luc C. G. J. M. Habets, Pieter J. Collins, and Jan H. van Schuppen. Reachability and Control
Synthesis for Piecewise-affine Hybrid Systems on Simplices.IEEE Trans. Automatic Control,
51(6):938–948, June 2006.

c© 2007 David C. Conner 219

[45] Luc C. G. J. M. Habets and Jan H. van Schuppen. Control of Piecewise-LinearHybrid Sys-
tems on Simplices and Rectangles.Hybrid Systems: Computation and Control, Lecture Notes
in Computer Science, 2034:261–274, 2001.

[46] Luc C. G. J. M. Habets and Jan H. van Schuppen. A Control Problem for Affine Dynamical
Systems on a Full-dimensional Polytope.Automatica, 40(1):21–35, January 2004.

[47] Sven Hedlund.Computational Methods for Optimal Control of Hybrid Systems. PhD thesis,
Lund Institute of Technology, May 2003.

[48] Thomas A. Henzinger. The Theory of Hybrid Automata. InProceedings of the 11th Annual
Symposium on Logic in Computer Science (LICS), pages 278–292. IEEE Computer Society
Press, 1996.

[49] Jonathan W. Hurst, Joel Chestnutt, and Alfred A. Rizzi. Design and Philosophy of the Bi-
MASC, a Highly Dynamic Biped. InIEEE Conference on Robotics and Automation, April
2007.

[50] T. Ikeda, M. Fukaya, and T. Mita. Position and Attitude Control of an Underwater Vehicle
Using Variable Constraint Control. InProceedings of the 40th IEEE Conference on Decision
and Control, volume 4, pages 3758 –3763, 2001.

[51] Alev̂s Jaklîvc, Alev̂s Leonardis, and Franc Solina.Segmentation and Recovery of Su-
perquadrics, volume 20 ofComputational Imaging and Vision. Kluwer, Dordrecth, 2000.
ISBN 0-7923-6601-8.

[52] Rune M. Jensen, Randy E. Bryant, and Manuela M. Veloso. SetA*: An Efficient BDD-Based
Heuristic Search Algorithm. InProceedings of AAAI-2002, Edmonton, Canada, August 2002.

[53] P. Jiḿenez, F. Thomas, and C. Torras.Robot Motion Planning and Control, chapter Collision
Detection Algorithms for Motion Planning, pages 255–304. Springer-Verlag, 1998.

[54] S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi, and H. Hirukawa.
Biped Walking Pattern Generation by Using Preview Control of Zero-Moment Point. InIEEE
Conference on Robotics and Automation, pages 1620– 1626, September 2003.

[55] George Kantor and Alfred A. Rizzi. Feedback Control of Underactuated Systems via Se-
quential Composition: Visually Guided Control of a Unicycle. InProceedings of 11th Inter-
national Symposium of Robotics Research, October 2003.

[56] George A. Kantor and Alfred A. Rizzi. Sequential Composition for Control of Underactu-
ated Systems. Technical Report TR-03-23, Robotics Institute, Carnegie Mellon University,
Pittsburgh, PA, December 2003.

[57] L. H. Keel and S. P. Bhattacharyya. Robust, Fragile, or Optimal?IEEE Transactions on
Automatic Control, 42(8):1098–1105, August 1997.

[58] J. M. Keil. Decomposing a Polygon into Simpler Components.SIAM J. Comput., 14:799–
817, 1985.

[59] Scott D. Kelly. The Mechanics and Control of Robotic Locomotion with Applications to
Aquatic Vehicles. PhD thesis, California Institute of Technology, 1998.

220 c© 2007 David C. Conner

[60] Oussama Khatib. Real-Time Obstacle Avoidance for Manipulators and MobileRobots.Inter-
national Journal of Robotics Research, 5(1):90–98, 1986.

[61] M. Kloetzer and C. Belta. A Fully Automated Framework for Control of Linear Systems
from LTL Specifications. In9th International Workshop on Hybrid Systems: Computation
and Control, Santa Barbara, California, 2006.

[62] M. Kloetzer and C. Belta. Managing Non-determinism in Symbolic Robot Motion Planning
and Control. InIEEE International Conference on Robotics and Automation (ICRA), Rome,
Italy, 2007.

[63] Daniel E. Koditschek. Some Applications of Natural Motion Control.ASME Journal of Dy-
namic Systems, Measurement, and Control, 113(4):552–557, December 1991.

[64] Daniel E. Koditschek. The Control of Natural Motion in Mechanical Systems.ASME Journal
of Dynamic Systems, Measurement, and Control, 113(4):548–551, December 1991.

[65] Ilya Kolmanovsky and N. Harris McClamroch. Developments in Nonholonomic Control
Problems.IEEE Control Systems, 15:20–36, December 1995.

[66] A. N. Kolmogorov and S. V. Fomin.Introduction to Real Analysis. Dover Publications, Inc.,
1975.

[67] Hadas Kress-Gazit. personal communication, 2007.

[68] Hadas Kress-Gazit, Georgios E. Fainekos, and George J. Pappas. Where’s Waldo? Sensor-
Based Temporal Logic Motion Planning. InIEEE International Conference on Robotics and
Automation, Rome, Italy, 2007.

[69] B. H. Krogh. A Generalized Potential Field Approach to Obstacle Avoidance Control. InSME
Conf. Proc. Robotics Research: The Next Five Years and Beyond, Bethlehem, Pennsylvania,
August 1984.

[70] J.C. Latombe.Robot Motion Planning. Kluwer Academic Publishers, Boston, MA, 1991.

[71] J. P. Laumond.Nonholonomic Motion Planning for Mobile Robots. Centre National de la
Recherche Scientifique, Laboratoire d’Analyse et d’Architecture des Systemes, 1998.

[72] J. P. Laumond, editor.Robot Motion Planning and Control. Springer-Verlag, 1998.

[73] J. P. Laumond, S. Sekhavat, and F. Lamiraux.Robot Motion Planning and Control, chapter
Guidelines in Nonholonomic Motion Planning for Mobile Robots, pages 1–54. Springer-
Verlag, 1998.

[74] Tom Lauwers, George A Kantor, and Ralph Hollis. A Dynamically Stable Single-Wheeled
Mobile Robot with Inverse Mouse-Ball Drive. InProceedings of the 2006 IEEE International
Conference on Robotics and Automation (ICRA ’06), pages 2884 – 2889, May 2006.

[75] S. M. LaValle.Planning Algorithms. Cambridge University Press, Cambridge, U.K., 2006.
Available at http://planning.cs.uiuc.edu/.

[76] Steven M. LaValle. From Dynamic Programming to RRTs: Algorithmic Design of Feasible
Trajectories. In A. Bicchi, H. I. Christensen, and D. Prattichizzo, editors,Control Problems
in Robotics, pages 19–37. Springer-Verlag, Berlin, 2002.

c© 2007 David C. Conner 221

[77] Steven M. LaValle and James J. Kuffner. Randomized Kinodynamic Planning.In IEEE In-
ternational Conference on Robotics and Automation, volume 1, pages 473–479, 1999.

[78] Steven M. LaValle and James J. Kuffner. Randomized Kinodynamic Planning.International
Journal of Robotics Research, 20(5):378–400, May 2001.

[79] Daniel Liberzon and A. Stephen Morse. Basic Problems in Stability and Design of Switched
Systems.IEEE Control Systems, pages 59–70, October 1999.

[80] Maxim Likhachev, David Ferguson, Geoffrey Gordon, Anthony (Tony) Stentz, and Sebastian
Thrun. Anytime Dynamic A*: An Anytime, Replanning Algorithm. InProceedings of the
International Conference on Automated Planning and Scheduling (ICAPS), June 2005.

[81] Maxim Likhachev and Sven Koenig. Speeding Up the Parti-Game Alorithm. InAdvances in
Neural Information Processing Systems 15. MIT Press, 2003.

[82] Stephen. R. Lindemann, Islam I. Hussein, and Steven M. LaValle. Realtime Feedback Con-
trol for Nonholonomic Mobile Robots with Obstacles. InIEEE Conference on Decision and
Control, San Diego, CA, 2006.

[83] Stephen. R. Lindemann and Steven M. LaValle. Smoothly Blending Vector Fields for Global
Robot Navigation. InIEEE Conference on Decision and Control, Seville, Spain, 2005.

[84] Stephen. R. Lindemann and Steven M. LaValle. Smooth Feedback for Car-Like Vehicles
in Polygonal Environments. InIEEE International Conference on Robotics and Automation
(ICRA), Rome, Italy, 2007.

[85] Gabriel A.D. Lopes and Daniel E. Koditschek. Level Sets and Stable Manifold Approxi-
mations for Perceptually Driven Nonholonomically Constrained Navigation. InIEEE/RSJ
International Conference on Intelligent Robots and Systems, Sendai, Japan, September 2004.

[86] T. Lozano-Pérez, Matthew T. Mason, and R. H. Taylor. Automatic Synthesis of Fine-motion
Strategies for Robots.International Journal of Robotics Research, 3(1):3–23, 1984.

[87] Matthew T. Mason.Mechanics of Robotic Manipulation. The MIT Press, 2001.

[88] G. Ayorkor Mills-Tettey, Anthony (Tony) Stentz, and M Bernardine Dias. DD* Lite: Efficient
Incremental Search with State Dominance. InTwenty-First National Conference on Artificial
Intelligence (AAAI-06), pages 1032–1038, July 2006.

[89] Brian Mirtich and John Canny. Using Skeletons for Nonholonomic Path Planning Among
Obstacles. InProceedings of IEEE International Conference on Robotics and Automation,
pages 2533–2540, May 1992.

[90] Jorge Cort́es Monforte.Geometric, Control and Numerical Aspects of Nonholonomic Sys-
tems. Springer, 2002.

[91] Monte Carlo and Quasi-Monte Carlo Methods, November 2007.

[92] Rémi Munos. A Study of Reinforcement Learning in the Continuous Case by the Means of
Viscosity Solutions.Machine Learning Journal, 40:265–299, 2000.

[93] Remi Munos and Andrew Moore. Variable Resolution Discretization in Optimal Control.
Machine Learning, 49, Numbers 2/3:291–323, November/December 2002.

222 c© 2007 David C. Conner

[94] Richard M. Murray, Zexiang Li, and S. Shankar Sastry.A MathematicalIntroduction to
Robotic Manipulation. CRC Press, 1994.

[95] W. L. Nelson. Continuous Curvature Paths for Autonomous Vehicles. InIEEE International
Conference on Robotics and Automation, volume 3, pages 1260–1264, Scottsdale, AZ, 1989.

[96] J.P. Ostrowski and J.W. Burdick. The Geometric Mechanics of Undulatory Robotic Locomo-
tion. International Journal of Robotics Research, 17(7):683–702, 1998.

[97] Sarangi Patel, Sang-Hack Jung, James P. Ostrowski, Rahul Rao, and Camillo J. Taylor. Sensor
Based Door Navigation for a Nonholonomic Vehicle. InIEEE International Conference on
Robotics and Automation, pages 3081–3086, Washington,DC, May 2002.

[98] Kaustubh Pathak and Sunil K. Agrawal. An Integrated Path-Planning and Control Ap-
proach for Nonholonomic Unicycles Using Switched Local Potentials.IEEE Transactions
on Robotics, 21(6):1201–1208, December 2005.

[99] Per-Olof Persson and Gilbert Strang. A Simple Mesh Generator in MATLAB.SIAM Review,
46(2):329–345, June 2004. Available online at http://www-math.mit.edu/ persson/mesh/.

[100] M. Peternell, H. Pottmann, and T. Steiner. Minkowski Sum Boundary Surfaces of 3D-objects.
Technical report, Vienna Univ. of Technology, Geometry Preprint Series No 140, 2005.

[101] Martin Peternell and Friedrich Manhart. The Convolution of a Paraboloid and a Parametrized
Surface.Journal for Geometry and Graphics 7, pages 157–171, 2003.

[102] A. Pnueli and E. Shahar. The TLV System and its Applications, 1996.

[103] Arthur Quaid and Alfred A. Rizzi. Robust and Efficient Motion Planning for a Planar Robot
Using Hybrid Control. InIEEE International Conference on Robotics and Automation, vol-
ume 4, pages 4021 – 4026, April 2000.

[104] Elon Rimon and Daniel E. Kodischek. Exact Robot Navigation Using Artificial Potential
Functions.IEEE Transactions on Robotics and Automation, 8(5):501–518, October 1992.

[105] Alfred A. Rizzi. Hybrid Control as a Method for Robot Motion Programming. InIEEE In-
ternational Conference on Robotics and Automation, volume 1, pages 832 – 837, May 1998.

[106] Robert C. McOwen.Partial Differential Equations: Methods and Applications. Pearson Ed-
ucation, Prentice Hall, 2nd edition, 2003.

[107] Bartek Roszak and Mireille E. Broucke. Necessary and Sufficient Conditions for Reachability
on a Simplex.Automatica, 42(11):1913–1918, November 2006.

[108] Stuart J. Russell and Peter Norvig.Artificial Intelligence: A Modern Approach. Prentice Hall,
1995.

[109] Maria Lucia Sampoli. Computing the Convolution and the Minkowski Sum of Surfaces. In
SCCG ’05: Proceedings of the 21st spring conference on Computer graphics, pages 111–
117, New York, NY, USA, 2005. ACM Press.

[110] Nilanjan Sarkar, Xiaoping Yun, and Vijay Kumar. Control of Mechanical Systems with
Rolling Constraints: Applications to Dynamic Control of Mobile Robots.The International
Journal of Robotics Research, 13(1):55–69, February 1994.

c© 2007 David C. Conner 223

[111] S. Sekhavat and M. Chyba. Nonholonomic Deformation of a Potential Fieldfor Motion Plan-
ning. In Proceedings of IEEE International Conference on Robotics and Automation, pages
817–822, May 1999.

[112] Elie Shammas.Generalized Motion Planning for Underactuated Mechanical Systems. PhD
thesis, Carnegie Mellon University, 2006.

[113] Reid Simmons. The Curvature-Velocity Method for Local Obstacle Avoidance. InIEEE In-
ternational Conference on Robotics and Automation, April 1996.

[114] Anthony (Tony) Stentz. The Focussed D* Algorithm for Real-Time Replanning. InProceed-
ings of the International Joint Conference on Artificial Intelligence, August 1995.

[115] P. Svestka and M. H. Overmars.Robot Motion Planning and Control, chapter Probabilistic
Path Planning, pages 255–304. Springer-Verlag, 1998.

[116] A. Tayebi and A. Rachid. A Unified Discontinuous State Feedback Controller for the Path-
Following and the Point-Stabilization Problems of a Unicycle-like Mobile Robot. InIEEE
International Conference on Robotics and Automation, pages 31–35, October 1997.

[117] John A. Thorpe.Elementary Topics in Differential Geometry. Springer, 1978.

[118] Sebastian Thrun, Wolfram Burgard, and Dieter Fox.Probabilistic Robotics. MIT Press,
Boston, MA, September 2005.

[119] D.E. Koditschek U. Saranli, M. Buehler. RHex: A Simple and Highly Mobile Hexapod
Robot.The International Journal of Robotics Research, 20(7):616–631, July 2001.

[120] M. Vendittelli, J.P. Laumond, and C. Nissoux. Obstacle Distance for Car-like Robots.IEEE
Transactions on Robotics and Automation, 15(4):678–691, 1999.

[121] Douglas B. West.Introduction to Graph Theory, 2nd ed.Prentice-Hall, Englewood Cliffs,
NJ, 2000.

[122] Wikipedia. Markov Decision Process — Wikipedia, The Free Encyclopedia, 2007. [Online;
accessed 13-November-2007].

[123] Libo Yang and Steven M. Lavalle. The Sampling-Based Neighborhood Graph: An Approach
to Computing and Executing Feedback Motion Strategies.IEEE Transactions on Robotics
and Automation, 20(3):419–432, June 2004.

224 c© 2007 David C. Conner

